BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 25333168)

  • 1. Bone tumor segmentation on bone scans using context information and random forests.
    Chu G; Lo P; Ramakrishna B; Kim H; Morris D; Goldin J; Brown M
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):601-8. PubMed ID: 25333168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans.
    Shiraishi J; Li Q; Appelbaum D; Pu Y; Doi K
    Med Phys; 2007 Jan; 34(1):25-36. PubMed ID: 17278486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-assisted interpretation of planar whole-body bone scans.
    Sadik M; Hamadeh I; Nordblom P; Suurkula M; Höglund P; Ohlsson M; Edenbrandt L
    J Nucl Med; 2008 Dec; 49(12):1958-65. PubMed ID: 18997038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images.
    Ghose S; Oliver A; Mitra J; Martí R; Lladó X; Freixenet J; Sidibé D; Vilanova JC; Comet J; Meriaudeau F
    Med Image Anal; 2013 Aug; 17(6):587-600. PubMed ID: 23666263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new computer-based decision-support system for the interpretation of bone scans.
    Sadik M; Jakobsson D; Olofsson F; Ohlsson M; Suurkula M; Edenbrandt L
    Nucl Med Commun; 2006 May; 27(5):417-23. PubMed ID: 16609352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keypoint Transfer Segmentation.
    Wachinger C; Toews M; Langs G; Wells W; Golland P
    Inf Process Med Imaging; 2015; 24():233-45. PubMed ID: 26221677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning approaches to analyze histological images of tissues from radical prostatectomies.
    Gertych A; Ing N; Ma Z; Fuchs TJ; Salman S; Mohanty S; Bhele S; Velásquez-Vacca A; Amin MB; Knudsen BS
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2(Pt 2):197-208. PubMed ID: 26362074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization.
    Donner R; Menze BH; Bischof H; Langs G
    Med Image Anal; 2013 Dec; 17(8):1304-14. PubMed ID: 23664450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pattern recognition approach to zonal segmentation of the prostate on MRI.
    Litjens G; Debats O; van de Ven W; Karssemeijer N; Huisman H
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):413-20. PubMed ID: 23286075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images.
    Karimaghaloo Z; Arnold DL; Arbel T
    Med Image Anal; 2016 Jan; 27():17-30. PubMed ID: 26211811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of computer-aided diagnosis system for bone scans: a retrospective analysis in 406 patients.
    Tokuda O; Harada Y; Ohishi Y; Matsunaga N; Edenbrandt L
    Ann Nucl Med; 2014 May; 28(4):329-39. PubMed ID: 24573796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model-based, semi-global segmentation approach for automatic 3-D point landmark localization in neuroimages.
    Liu J; Gao W; Huang S; Nowinski WL
    IEEE Trans Med Imaging; 2008 Aug; 27(8):1034-44. PubMed ID: 18672421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters.
    Schneider M; Hirsch S; Weber B; Székely G; Menze BH
    Med Image Anal; 2015 Jan; 19(1):220-49. PubMed ID: 25461339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human body segmentation via data-driven graph cut.
    Li S; Lu H; Shao X
    IEEE Trans Cybern; 2014 Nov; 44(11):2099-108. PubMed ID: 25330472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method.
    Zhan Y; Shen D
    IEEE Trans Med Imaging; 2006 Mar; 25(3):256-72. PubMed ID: 16524083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical utility of temporal subtraction images in successive whole-body bone scans: evaluation in a prospective clinical study.
    Shiraishi J; Appelbaum D; Pu Y; Engelmann R; Li Q; Doi K
    J Digit Imaging; 2011 Aug; 24(4):680-7. PubMed ID: 20730471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmenting brain tumors using pseudo-conditional random fields.
    Lee CH; Wang S; Murtha A; Brown MR; Greiner R
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):359-66. PubMed ID: 18979767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised methods for detection and segmentation of tissues in clinical lumbar MRI.
    Ghosh S; Chaudhary V
    Comput Med Imaging Graph; 2014 Oct; 38(7):639-49. PubMed ID: 24746606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technical note: identifying the prostate cancer 'superscan' by quantitative skeletal scintigraphy.
    Hawkins T; Halewood MM
    Nucl Med Commun; 2008 Jul; 29(7):654-9. PubMed ID: 18528189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of the luminal border in intravascular ultrasound B-mode images using a probabilistic approach.
    Mendizabal-Ruiz EG; Rivera M; Kakadiaris IA
    Med Image Anal; 2013 Aug; 17(6):649-70. PubMed ID: 23490618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.