These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25333186)

  • 1. Coupled sparse dictionary for depth-based cup segmentation from single color fundus image.
    Chakravarty A; Sivaswamy J
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):747-54. PubMed ID: 25333186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optic disc and cup segmentation from color fundus photograph using graph cut with priors.
    Zheng Y; Stambolian D; O'Brien J; Gee JC
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):75-82. PubMed ID: 24579126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint optic disc and cup boundary extraction from monocular fundus images.
    Chakravarty A; Sivaswamy J
    Comput Methods Programs Biomed; 2017 Aug; 147():51-61. PubMed ID: 28734530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment.
    Joshi GD; Sivaswamy J; Krishnadas SR
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1192-205. PubMed ID: 21536531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth discontinuity-based cup segmentation from multiview color retinal images.
    Joshi GD; Sivaswamy J; Krishnadas SR
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1523-31. PubMed ID: 22333978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optic cup segmentation for glaucoma detection using low-rank superpixel representation.
    Xu Y; Duan L; Lin S; Chen X; Wong DW; Wong TY; Liu J
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):788-95. PubMed ID: 25333191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust multi-scale superpixel classification for optic cup localization.
    Tan NM; Xu Y; Goh WB; Liu J
    Comput Med Imaging Graph; 2015 Mar; 40():182-93. PubMed ID: 25453464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adaptive threshold based image processing technique for improved glaucoma detection and classification.
    Issac A; Partha Sarathi M; Dutta MK
    Comput Methods Programs Biomed; 2015 Nov; 122(2):229-44. PubMed ID: 26321351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation of the optic nerve head for deformation measurements in video rate optical coherence tomography.
    Hidalgo-Aguirre M; Gitelman J; Lesk MR; Costantino S
    J Biomed Opt; 2015 Nov; 20(11):116008. PubMed ID: 26598974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intelligent fusion of cup-to-disc ratio determination methods for glaucoma detection in ARGALI.
    Wong DW; Liu J; Lim JH; Tan NM; Zhang Z; Lu S; Li H; Teo MH; Chan KL; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5777-80. PubMed ID: 19963657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundus optic disc localization and segmentation method based on phase congruency.
    Geng L; Shao YT; Xiao ZT; Zhang F; Wu J; Li M; Shan CY
    Biomed Mater Eng; 2014; 24(6):3223-9. PubMed ID: 25227031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation of optic disc in SD-OCT images and cup-to-disc ratios quantification by patch searching-based neural canal opening detection.
    Wu M; Leng T; de Sisternes L; Rubin DL; Chen Q
    Opt Express; 2015 Nov; 23(24):31216-29. PubMed ID: 26698750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superpixel classification based optic cup segmentation.
    Cheng J; Liu J; Tao D; Yin F; Wong DW; Xu Y; Wong TY
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):421-8. PubMed ID: 24505789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixture model-based approach for optic cup segmentation.
    Tan NM; Liu J; Wong DK; Yin F; Lim JH; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4817-20. PubMed ID: 21097297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis.
    Povazay B; Hofer B; Hermann B; Unterhuber A; Morgan JE; Glittenberg C; Binder S; Drexler W
    J Biomed Opt; 2007; 12(4):041204. PubMed ID: 17867793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image.
    Singh A; Dutta MK; ParthaSarathi M; Uher V; Burget R
    Comput Methods Programs Biomed; 2016 Feb; 124():108-20. PubMed ID: 26574297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative depth analysis of optic nerve head using stereo retinal fundus image pair.
    Nakagawa T; Suzuki T; Hayashi Y; Mizukusa Y; Hatanaka Y; Ishida K; Hara T; Fujita H; Yamamoto T
    J Biomed Opt; 2008; 13(6):064026. PubMed ID: 19123672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic recovery of the optic nervehead geometry in optical coherence tomography.
    Boyer KL; Herzog A; Roberts C
    IEEE Trans Med Imaging; 2006 May; 25(5):553-70. PubMed ID: 16689260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-adaptive distance regularized level set evolution method for optical disk segmentation.
    Wu H; Geng X; Zhang X; Qiu M; Jiang K; Tang L; Dong J
    Biomed Mater Eng; 2014; 24(6):3199-206. PubMed ID: 25227028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation.
    Shankaranarayana SM; Ram K; Mitra K; Sivaprakasam M
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1417-1426. PubMed ID: 30762573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.