These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 25333325)
1. Multicomponent polymeric nanoparticles enhancing intracellular drug release in cancer cells. Ahmed A; Liu S; Pan Y; Yuan S; He J; Hu Y ACS Appl Mater Interfaces; 2014 Dec; 6(23):21316-24. PubMed ID: 25333325 [TBL] [Abstract][Full Text] [Related]
2. Protein delivery nanosystem of six-arm copolymer poly(ε-caprolactone)-poly(ethylene glycol) for long-term sustained release. Duan J; Liu C; Liang X; Li X; Chen Y; Chen Z; Wang X; Kong D; Li Y; Yang J Int J Nanomedicine; 2018; 13():2743-2754. PubMed ID: 29780245 [TBL] [Abstract][Full Text] [Related]
3. Oridonin-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) copolymer nanoparticles: preparation, characterization, and antitumor activity on mice with transplanted hepatoma. Feng N; Wu P; Li Q; Mei Y; Shi S; Yu J; Xu J; Liu Y; Wang Y J Drug Target; 2008 Jul; 16(6):479-85. PubMed ID: 18604660 [TBL] [Abstract][Full Text] [Related]
4. Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm. Venuta A; Moret F; Dal Poggetto G; Esposito D; Fraix A; Avitabile C; Ungaro F; Malinconico M; Sortino S; Romanelli A; Laurienzo P; Reddi E; Quaglia F Eur J Pharm Sci; 2018 Jan; 111():177-185. PubMed ID: 28966100 [TBL] [Abstract][Full Text] [Related]
5. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958 [TBL] [Abstract][Full Text] [Related]
6. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(epsilon-caprolactone) as drug carriers with enhanced properties. Zhang W; Li Y; Liu L; Sun Q; Shuai X; Zhu W; Chen Y Biomacromolecules; 2010 May; 11(5):1331-8. PubMed ID: 20405912 [TBL] [Abstract][Full Text] [Related]
7. Preparation of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles by a microchannel technology. Guo F; Guo D; Zhang W; Yan Q; Yang Y; Hong W; Yang G Eur J Pharm Sci; 2017 Mar; 99():328-336. PubMed ID: 28062259 [TBL] [Abstract][Full Text] [Related]
8. Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol). Liu L; Zheng M; Librizzi D; Renette T; Merkel OM; Kissel T Mol Pharm; 2016 Jan; 13(1):134-43. PubMed ID: 26641134 [TBL] [Abstract][Full Text] [Related]
9. Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of epsilon-caprolactone in the presence of poly(ethylene glycol). Huang MH; Li S; Hutmacher DW; Schantz JT; Vacanti CA; Braud C; Vert M J Biomed Mater Res A; 2004 Jun; 69(3):417-27. PubMed ID: 15127388 [TBL] [Abstract][Full Text] [Related]
10. Poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) nanoparticles: preparation, characterization, and application in doxorubicin delivery. Gou M; Zheng X; Men K; Zhang J; Zheng L; Wang X; Luo F; Zhao Y; Zhao X; Wei Y; Qian Z J Phys Chem B; 2009 Oct; 113(39):12928-33. PubMed ID: 19736995 [TBL] [Abstract][Full Text] [Related]
11. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098 [TBL] [Abstract][Full Text] [Related]
12. Amphiphilic methoxy poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(2-dimethylaminoethyl methacrylate) cationic copolymer nanoparticles as a vector for gene and drug delivery. Yue X; Qiao Y; Qiao N; Guo S; Xing J; Deng L; Xu J; Dong A Biomacromolecules; 2010 Sep; 11(9):2306-12. PubMed ID: 20666510 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of surfactant free PCL-PEG brushed nanoparticles with tunable degradation kinetics. Ferrari R; Colombo C; Casali C; Lupi M; Ubezio P; Falcetta F; D'Incalci M; Morbidelli M; Moscatelli D Int J Pharm; 2013 Sep; 453(2):551-9. PubMed ID: 23796832 [TBL] [Abstract][Full Text] [Related]
14. Spatiotemporally programmable surface engineered nanoparticles for effective anticancer drug delivery. Ahmed A; Yu H; Han D; Rao J; Ding Y; Hu Y Macromol Biosci; 2014 Nov; 14(11):1652-62. PubMed ID: 25181029 [TBL] [Abstract][Full Text] [Related]
15. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Du XJ; Wang JL; Liu WW; Yang JX; Sun CY; Sun R; Li HJ; Shen S; Luo YL; Ye XD; Zhu YH; Yang XZ; Wang J Biomaterials; 2015 Nov; 69():1-11. PubMed ID: 26275857 [TBL] [Abstract][Full Text] [Related]
16. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation. Devrim B; Kara A; Vural İ; Bozkır A Drug Dev Ind Pharm; 2016 Nov; 42(11):1865-76. PubMed ID: 27091346 [TBL] [Abstract][Full Text] [Related]
17. Modular synthesis of folate conjugated ternary copolymers: polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate for targeted gene delivery. Liu L; Zheng M; Renette T; Kissel T Bioconjug Chem; 2012 Jun; 23(6):1211-20. PubMed ID: 22548308 [TBL] [Abstract][Full Text] [Related]
18. Optimization of the hydrophobic domain in poly(ethylene oxide)-poly(varepsilon-caprolactone) based nano-carriers for the solubilization and delivery of Amphotericin B. Falamarzian A; Lavasanifar A Colloids Surf B Biointerfaces; 2010 Nov; 81(1):313-20. PubMed ID: 20674292 [TBL] [Abstract][Full Text] [Related]