These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25335567)

  • 1. Developing a novel test to detect cancer genes from microarray data.
    Mathur S; Mathur S
    Int J Bioinform Res Appl; 2014; 10(6):628-46. PubMed ID: 25335567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ranking analysis for identifying differentially expressed genes.
    Qi Y; Sun H; Sun Q; Pan L
    Genomics; 2011 May; 97(5):326-9. PubMed ID: 21402142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nonparametric likelihood ratio test to identify differentially expressed genes from microarray data.
    Bokka S; Mathur SK
    Appl Bioinformatics; 2006; 5(4):267-76. PubMed ID: 17140273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. caGEDA: a web application for the integrated analysis of global gene expression patterns in cancer.
    Patel S; Lyons-Weiler J
    Appl Bioinformatics; 2004; 3(1):49-62. PubMed ID: 16323966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble dependence model for classification and prediction of cancer and normal gene expression data.
    Qiu P; Wang ZJ; Liu KJ
    Bioinformatics; 2005 Jul; 21(14):3114-21. PubMed ID: 15879455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spline function approach for detecting differentially expressed genes in microarray data analysis.
    He W
    Bioinformatics; 2004 Nov; 20(17):2954-63. PubMed ID: 15180936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A probabilistic approach for automated discovery of perturbed genes using expression data from microarray or RNA-Seq.
    Sundaramurthy G; Eghbalnia HR
    Comput Biol Med; 2015 Dec; 67():29-40. PubMed ID: 26492320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ancova approach to normalize microarray data, and its performance to existing methods.
    Chan SH; Chen LJ; Chow NH; Liu HS
    J Bioinform Comput Biol; 2005 Apr; 3(2):257-68. PubMed ID: 15852504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments.
    Gao X
    Bioinformatics; 2006 Jun; 22(12):1486-94. PubMed ID: 16574697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient semi-unsupervised gene selection method via spectral biclustering.
    Liu B; Wan C; Wang L
    IEEE Trans Nanobioscience; 2006 Jun; 5(2):110-4. PubMed ID: 16805107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An effective hybrid approach of gene selection and classification for microarray data based on clustering and particle swarm optimization.
    Han F; Yang S; Guan J
    Int J Data Min Bioinform; 2015; 13(2):103-21. PubMed ID: 26547970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some comments on instability of false discovery rate estimation.
    Qiu X; Yakovlev A
    J Bioinform Comput Biol; 2006 Oct; 4(5):1057-68. PubMed ID: 17099941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical assessment of functional categories of genes deregulated in pathological conditions by using microarray data.
    Maglietta R; Piepoli A; Catalano D; Licciulli F; Carella M; Liuni S; Pesole G; Perri F; Ancona N
    Bioinformatics; 2007 Aug; 23(16):2063-72. PubMed ID: 17540679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved procedure for gene selection from microarray experiments using false discovery rate criterion.
    Yang JJ; Yang MC
    BMC Bioinformatics; 2006 Jan; 7():15. PubMed ID: 16405735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From microarray to biology: an integrated experimental, statistical and in silico analysis of how the extracellular matrix modulates the phenotype of cancer cells.
    Dozmorov MG; Kyker KD; Hauser PJ; Saban R; Buethe DD; Dozmorov I; Centola MB; Culkin DJ; Hurst RE
    BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S4. PubMed ID: 18793468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wrapper-based gene selection with Markov blanket.
    Wang A; An N; Yang J; Chen G; Li L; Alterovitz G
    Comput Biol Med; 2017 Feb; 81():11-23. PubMed ID: 28006702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis.
    Tang Y; Zhang YQ; Huang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):365-81. PubMed ID: 17666757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Housekeeping genes in cancer: normalization of array data.
    Khimani AH; Mhashilkar AM; Mikulskis A; O'Malley M; Liao J; Golenko EE; Mayer P; Chada S; Killian JB; Lott ST
    Biotechniques; 2005 May; 38(5):739-45. PubMed ID: 15948292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirical Bayes screening of many p-values with applications to microarray studies.
    Datta S; Datta S
    Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient Monte Carlo approach to assessing statistical significance in genomic studies.
    Lin DY
    Bioinformatics; 2005 Mar; 21(6):781-7. PubMed ID: 15454414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.