These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 25336235)

  • 1. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow.
    Songok J; Tuominen M; Teisala H; Haapanen J; Mäkelä J; Kuusipalo J; Toivakka M
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20060-6. PubMed ID: 25336235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.
    Xu QF; Liu Y; Lin FJ; Mondal B; Lyons AM
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8915-24. PubMed ID: 23889192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow Manipulation in Thread-Based Microfluidics by Tuning the Wettability of Wool.
    Jeon SH; Hwang KH; Jung WS; Seo HJ; Nam SW; Boo JH; Yun SH
    J Biomed Nanotechnol; 2015 Feb; 11(2):319-24. PubMed ID: 26349307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.
    Pompano RR; Platt CE; Karymov MA; Ismagilov RF
    Langmuir; 2012 Jan; 28(3):1931-41. PubMed ID: 22233156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of capillary-driven liquid-liquid displacement in open microchannels.
    Yang D; Krasowska M; Priest C; Ralston J
    Phys Chem Chem Phys; 2014 Nov; 16(44):24473-8. PubMed ID: 25308905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping.
    Songjaroen T; Dungchai W; Chailapakul O; Laiwattanapaisal W
    Talanta; 2011 Oct; 85(5):2587-93. PubMed ID: 21962687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation.
    Kobayashi T; Shimizu K; Kaizuma Y; Konishi S
    Lab Chip; 2011 Feb; 11(4):639-44. PubMed ID: 21127789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Capillary-Driven Flow for Paper-Based Microfluidic Channels.
    Songok J; Toivakka M
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30523-30530. PubMed ID: 27750422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic electrowetting and dewetting of ionic liquids at a hydrophobic solid-liquid interface.
    Li H; Paneru M; Sedev R; Ralston J
    Langmuir; 2013 Feb; 29(8):2631-9. PubMed ID: 23362860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rewritable superhydrophilic-superhydrophobic patterns on a sintered titanium dioxide substrate.
    Nakata K; Nishimoto S; Yuda Y; Ochiai T; Murakami T; Fujishima A
    Langmuir; 2010 Jul; 26(14):11628-30. PubMed ID: 20552954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing.
    Lu Y; Shi W; Qin J; Lin B
    Anal Chem; 2010 Jan; 82(1):329-35. PubMed ID: 20000582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoresponsive liquid marbles and dry water.
    Tan TT; Ahsan A; Reithofer MR; Tay SW; Tan SY; Hor TS; Chin JM; Chew BK; Wang X
    Langmuir; 2014 Apr; 30(12):3448-54. PubMed ID: 24617527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A perspective on paper-based microfluidics: Current status and future trends.
    Li X; Ballerini DR; Shen W
    Biomicrofluidics; 2012 Mar; 6(1):11301-1130113. PubMed ID: 22662067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced photo-polymerisation for creation of paper-based fluidic devices.
    Sones CL; Katis IN; He PJ; Mills B; Namiq MF; Shardlow P; Ibsen M; Eason RW
    Lab Chip; 2014 Dec; 14(23):4567-74. PubMed ID: 25286149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of non-Newtonian liquids using a microfluidic capillary viscometer.
    Srivastava N; Burns MA
    Anal Chem; 2006 Mar; 78(5):1690-6. PubMed ID: 16503624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography.
    Asano H; Shiraishi Y
    Anal Chim Acta; 2015 Jul; 883():55-60. PubMed ID: 26088776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.