These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 25336291)
1. Photothermal stress triggered by near infrared-irradiated carbon nanotubes promotes bone deposition in rat calvarial defects. Yanagi T; Kajiya H; Kawaguchi M; Kido H; Fukushima T J Biomater Appl; 2015 Mar; 29(8):1109-18. PubMed ID: 25336291 [TBL] [Abstract][Full Text] [Related]
2. Photothermal stress triggered by near-infrared-irradiated carbon nanotubes up-regulates osteogenesis and mineral deposition in tooth-extracted sockets. Kajiya H; Katsumata Y; Sasaki M; Tsutsumi T; Kawaguchi M; Fukushima T Int J Hyperthermia; 2015; 31(6):635-42. PubMed ID: 26000973 [TBL] [Abstract][Full Text] [Related]
3. Osteogenic potential for replacing cells in rat cranial defects implanted with a DNA/protamine complex paste. Toda M; Ohno J; Shinozaki Y; Ozaki M; Fukushima T Bone; 2014 Oct; 67():237-45. PubMed ID: 25051019 [TBL] [Abstract][Full Text] [Related]
4. A salmon DNA scaffold promotes osteogenesis through activation of sodium-dependent phosphate cotransporters. Katsumata Y; Kajiya H; Okabe K; Fukushima T; Ikebe T Biochem Biophys Res Commun; 2015 Dec; 468(4):622-8. PubMed ID: 26551467 [TBL] [Abstract][Full Text] [Related]
5. In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects. Choi JW; Park EJ; Shin HS; Shin IS; Ra JC; Koh KS Ann Plast Surg; 2014 Feb; 72(2):225-33. PubMed ID: 23221992 [TBL] [Abstract][Full Text] [Related]
6. Local delivery of COMP-angiopoietin 1 accelerates new bone formation in rat calvarial defects. Lim SS; Kook SH; Bhattarai G; Cho ES; Seo YK; Lee JC J Biomed Mater Res A; 2015 Sep; 103(9):2942-51. PubMed ID: 25727390 [TBL] [Abstract][Full Text] [Related]
7. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. Shen Y; Yang S; Liu J; Xu H; Shi Z; Lin Z; Ying X; Guo P; Lin T; Yan S; Huang Q; Peng L ACS Appl Mater Interfaces; 2014 Aug; 6(15):12177-88. PubMed ID: 25033438 [TBL] [Abstract][Full Text] [Related]
8. Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Lin CY; Chang YH; Kao CY; Lu CH; Sung LY; Yen TC; Lin KJ; Hu YC Biomaterials; 2012 May; 33(14):3682-92. PubMed ID: 22361095 [TBL] [Abstract][Full Text] [Related]
9. Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects. El Backly RM; Zaky SH; Canciani B; Saad MM; Eweida AM; Brun F; Tromba G; Komlev VS; Mastrogiacomo M; Marei MK; Cancedda R J Craniomaxillofac Surg; 2014 Jul; 42(5):e70-9. PubMed ID: 23932544 [TBL] [Abstract][Full Text] [Related]
10. Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration. Sato A; Kajiya H; Mori N; Sato H; Fukushima T; Kido H; Ohno J PLoS One; 2017; 12(1):e0169522. PubMed ID: 28060874 [TBL] [Abstract][Full Text] [Related]
11. Bone formation on carbon nanotube composite. Bhattacharya M; Wutticharoenmongkol-Thitiwongsawet P; Hamamoto DT; Lee D; Cui T; Prasad HS; Ahmad M J Biomed Mater Res A; 2011 Jan; 96(1):75-82. PubMed ID: 21105154 [TBL] [Abstract][Full Text] [Related]
12. Bone healing evaluation of nanofibrous composite scaffolds in rat calvarial defects: a comparative study. Jaiswal AK; Dhumal RV; Ghosh S; Chaudhari P; Nemani H; Soni VP; Vanage GR; Bellare JR J Biomed Nanotechnol; 2013 Dec; 9(12):2073-85. PubMed ID: 24266262 [TBL] [Abstract][Full Text] [Related]
13. Nell-1-induced bone regeneration in calvarial defects. Aghaloo T; Cowan CM; Chou YF; Zhang X; Lee H; Miao S; Hong N; Kuroda S; Wu B; Ting K; Soo C Am J Pathol; 2006 Sep; 169(3):903-15. PubMed ID: 16936265 [TBL] [Abstract][Full Text] [Related]
14. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Gu Y; Huang W; Rahaman MN; Day DE Acta Biomater; 2013 Nov; 9(11):9126-36. PubMed ID: 23827095 [TBL] [Abstract][Full Text] [Related]
15. The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration. Xie Q; Wang Z; Zhou H; Yu Z; Huang Y; Sun H; Bi X; Wang Y; Shi W; Gu P; Fan X Biomaterials; 2016 Jan; 75():279-294. PubMed ID: 26513420 [TBL] [Abstract][Full Text] [Related]
16. Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo. Aghaloo TL; Amantea CM; Cowan CM; Richardson JA; Wu BM; Parhami F; Tetradis S J Orthop Res; 2007 Nov; 25(11):1488-97. PubMed ID: 17568450 [TBL] [Abstract][Full Text] [Related]
17. 3D Printed Wesselsite Nanosheets Functionalized Scaffold Facilitates NIR-II Photothermal Therapy and Vascularized Bone Regeneration. Yang C; Ma H; Wang Z; Younis MR; Liu C; Wu C; Luo Y; Huang P Adv Sci (Weinh); 2021 Oct; 8(20):e2100894. PubMed ID: 34396718 [TBL] [Abstract][Full Text] [Related]
18. Human adipose-derived stromal cells stimulate autogenous skeletal repair via paracrine Hedgehog signaling with calvarial osteoblasts. Levi B; James AW; Nelson ER; Li S; Peng M; Commons GW; Lee M; Wu B; Longaker MT Stem Cells Dev; 2011 Feb; 20(2):243-57. PubMed ID: 20698749 [TBL] [Abstract][Full Text] [Related]
19. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613 [TBL] [Abstract][Full Text] [Related]
20. Degradation rate of DNA scaffolds and bone regeneration. Matsumoto A; Kajiya H; Yamamoto-M N; Yanagi T; Imamura A; Okabe K; Fukushima T; Kido H; Ohno J J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):122-128. PubMed ID: 29521019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]