BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

618 related articles for article (PubMed ID: 25336483)

  • 1. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.
    Xu S; Hu H; Jiang H; Xu Z; Wan M
    J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-high-frequency ultrasound excitation on microbubble destruction volume.
    Shen CC; Su SY; Cheng CH; Yeh CK
    Ultrasonics; 2010 Jun; 50(7):698-703. PubMed ID: 20193957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.
    Tung YS; Choi JJ; Baseri B; Konofagou EE
    Ultrasound Med Biol; 2010 May; 36(5):840-52. PubMed ID: 20420973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of acoustic insonation parameters on ultrasound contrast agent destruction.
    Yeh CK; Su SY
    Ultrasound Med Biol; 2008 Aug; 34(8):1281-91. PubMed ID: 18343019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimisation of the transmit beam parameters for generation of subharmonic signals in native and altered populations of a commercial microbubble contrast agent SonoVue®.
    Ivory AM; Meaney JF; Fagan AJ; Browne JE
    Phys Med; 2020 Feb; 70():176-183. PubMed ID: 32036334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.
    Guo X; Li Q; Zhang Z; Zhang D; Tu J
    J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple method for quantifying ultrasound-triggered microbubble destruction.
    Hung SH; Yeh CK; Tsai TH; Chen T; Chen RC
    Ultrasound Med Biol; 2011 Jun; 37(6):949-57. PubMed ID: 21546152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure.
    Choi JJ; Coussios CC
    J Acoust Soc Am; 2012 Nov; 132(5):3538-49. PubMed ID: 23145633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ultrasound induced cavitation on magnetic resonance imaging contrast in the rat liver in the presence of macromolecular contrast agent.
    Frulio N; Trillaud H; Deckers R; Lepreux S; Moonen C; Quesson B
    Invest Radiol; 2010 May; 45(5):282-7. PubMed ID: 20375844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent.
    Casciaro S; Palmizio Errico R; Conversano F; Demitri C; Distante A
    Invest Radiol; 2007 Feb; 42(2):95-104. PubMed ID: 17220727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro acoustic characterization of three phospholipid ultrasound contrast agents from 12 to 43 MHz.
    Sun C; Sboros V; Butler MB; Moran CM
    Ultrasound Med Biol; 2014 Mar; 40(3):541-50. PubMed ID: 24361219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.
    Chen X; Wang J; Pacella JJ; Villanueva FS
    Ultrasound Med Biol; 2016 Feb; 42(2):528-538. PubMed ID: 26603628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial cavitation threshold of nested microbubbles.
    Wallace N; Dicker S; Lewin P; Wrenn SP
    Ultrasonics; 2015 Apr; 58():67-74. PubMed ID: 25620709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro contrast-enhanced ultrasound measurements of capillary microcirculation: comparison between polymer- and phospholipid-shelled microbubbles.
    Grishenkov D; Kari L; Brodin LK; Brismar TB; Paradossi G
    Ultrasonics; 2011 Jan; 51(1):40-8. PubMed ID: 20542310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable and transient subharmonic emissions from isolated contrast agent microbubbles.
    Biagi E; Breschi L; Vannacci E; Masotti L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):480-97. PubMed ID: 17375818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy.
    Hockham N; Coussios CC; Arora M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents.
    Radhakrishnan K; Bader KB; Haworth KJ; Kopechek JA; Raymond JL; Huang SL; McPherson DD; Holland CK
    Phys Med Biol; 2013 Sep; 58(18):6541-63. PubMed ID: 24002637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation-enhanced extravasation for drug delivery.
    Arvanitis CD; Bazan-Peregrino M; Rifai B; Seymour LW; Coussios CC
    Ultrasound Med Biol; 2011 Nov; 37(11):1838-52. PubMed ID: 21963037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation threshold of microbubbles in gel tunnels by focused ultrasound.
    Sassaroli E; Hynynen K
    Ultrasound Med Biol; 2007 Oct; 33(10):1651-60. PubMed ID: 17590501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal response of contrast agent microbubbles: preliminary results from physico-chemical and US-imaging characterization.
    Guiot C; Pastore G; Napoleone M; Gabriele P; Trotta M; Cavalli R
    Ultrasonics; 2006 Dec; 44 Suppl 1():e127-30. PubMed ID: 17056082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.