These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 25336483)

  • 1. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.
    Xu S; Hu H; Jiang H; Xu Z; Wan M
    J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-high-frequency ultrasound excitation on microbubble destruction volume.
    Shen CC; Su SY; Cheng CH; Yeh CK
    Ultrasonics; 2010 Jun; 50(7):698-703. PubMed ID: 20193957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.
    Tung YS; Choi JJ; Baseri B; Konofagou EE
    Ultrasound Med Biol; 2010 May; 36(5):840-52. PubMed ID: 20420973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of acoustic insonation parameters on ultrasound contrast agent destruction.
    Yeh CK; Su SY
    Ultrasound Med Biol; 2008 Aug; 34(8):1281-91. PubMed ID: 18343019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimisation of the transmit beam parameters for generation of subharmonic signals in native and altered populations of a commercial microbubble contrast agent SonoVue®.
    Ivory AM; Meaney JF; Fagan AJ; Browne JE
    Phys Med; 2020 Feb; 70():176-183. PubMed ID: 32036334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.
    Guo X; Li Q; Zhang Z; Zhang D; Tu J
    J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple method for quantifying ultrasound-triggered microbubble destruction.
    Hung SH; Yeh CK; Tsai TH; Chen T; Chen RC
    Ultrasound Med Biol; 2011 Jun; 37(6):949-57. PubMed ID: 21546152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure.
    Choi JJ; Coussios CC
    J Acoust Soc Am; 2012 Nov; 132(5):3538-49. PubMed ID: 23145633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ultrasound induced cavitation on magnetic resonance imaging contrast in the rat liver in the presence of macromolecular contrast agent.
    Frulio N; Trillaud H; Deckers R; Lepreux S; Moonen C; Quesson B
    Invest Radiol; 2010 May; 45(5):282-7. PubMed ID: 20375844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro acoustic characterization of three phospholipid ultrasound contrast agents from 12 to 43 MHz.
    Sun C; Sboros V; Butler MB; Moran CM
    Ultrasound Med Biol; 2014 Mar; 40(3):541-50. PubMed ID: 24361219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent.
    Casciaro S; Palmizio Errico R; Conversano F; Demitri C; Distante A
    Invest Radiol; 2007 Feb; 42(2):95-104. PubMed ID: 17220727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.
    Chen X; Wang J; Pacella JJ; Villanueva FS
    Ultrasound Med Biol; 2016 Feb; 42(2):528-538. PubMed ID: 26603628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial cavitation threshold of nested microbubbles.
    Wallace N; Dicker S; Lewin P; Wrenn SP
    Ultrasonics; 2015 Apr; 58():67-74. PubMed ID: 25620709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro contrast-enhanced ultrasound measurements of capillary microcirculation: comparison between polymer- and phospholipid-shelled microbubbles.
    Grishenkov D; Kari L; Brodin LK; Brismar TB; Paradossi G
    Ultrasonics; 2011 Jan; 51(1):40-8. PubMed ID: 20542310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable and transient subharmonic emissions from isolated contrast agent microbubbles.
    Biagi E; Breschi L; Vannacci E; Masotti L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):480-97. PubMed ID: 17375818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy.
    Hockham N; Coussios CC; Arora M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents.
    Radhakrishnan K; Bader KB; Haworth KJ; Kopechek JA; Raymond JL; Huang SL; McPherson DD; Holland CK
    Phys Med Biol; 2013 Sep; 58(18):6541-63. PubMed ID: 24002637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation-enhanced extravasation for drug delivery.
    Arvanitis CD; Bazan-Peregrino M; Rifai B; Seymour LW; Coussios CC
    Ultrasound Med Biol; 2011 Nov; 37(11):1838-52. PubMed ID: 21963037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation threshold of microbubbles in gel tunnels by focused ultrasound.
    Sassaroli E; Hynynen K
    Ultrasound Med Biol; 2007 Oct; 33(10):1651-60. PubMed ID: 17590501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal response of contrast agent microbubbles: preliminary results from physico-chemical and US-imaging characterization.
    Guiot C; Pastore G; Napoleone M; Gabriele P; Trotta M; Cavalli R
    Ultrasonics; 2006 Dec; 44 Suppl 1():e127-30. PubMed ID: 17056082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.