These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 25336584)
1. Crystal structure of a signal recognition particle Alu domain in the elongation arrest conformation. Bousset L; Mary C; Brooks MA; Scherrer A; Strub K; Cusack S RNA; 2014 Dec; 20(12):1955-62. PubMed ID: 25336584 [TBL] [Abstract][Full Text] [Related]
2. The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14. Birse DE; Kapp U; Strub K; Cusack S; Aberg A EMBO J; 1997 Jul; 16(13):3757-66. PubMed ID: 9233785 [TBL] [Abstract][Full Text] [Related]
3. Retrotransposition and Crystal Structure of an Alu RNP in the Ribosome-Stalling Conformation. Ahl V; Keller H; Schmidt S; Weichenrieder O Mol Cell; 2015 Dec; 60(5):715-727. PubMed ID: 26585389 [TBL] [Abstract][Full Text] [Related]
4. Structure and assembly of the Alu domain of the mammalian signal recognition particle. Weichenrieder O; Wild K; Strub K; Cusack S Nature; 2000 Nov; 408(6809):167-73. PubMed ID: 11089964 [TBL] [Abstract][Full Text] [Related]
5. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Halic M; Becker T; Pool MR; Spahn CM; Grassucci RA; Frank J; Beckmann R Nature; 2004 Feb; 427(6977):808-14. PubMed ID: 14985753 [TBL] [Abstract][Full Text] [Related]
6. Structure of SRP14 from the Schizosaccharomyces pombe signal recognition particle. Brooks MA; Ravelli RB; McCarthy AA; Strub K; Cusack S Acta Crystallogr D Biol Crystallogr; 2009 May; 65(Pt 5):421-33. PubMed ID: 19390147 [TBL] [Abstract][Full Text] [Related]
7. A truncation in the 14 kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle. Thomas Y; Bui N; Strub K Nucleic Acids Res; 1997 May; 25(10):1920-9. PubMed ID: 9115358 [TBL] [Abstract][Full Text] [Related]
8. Conserved tertiary base pairing ensures proper RNA folding and efficient assembly of the signal recognition particle Alu domain. Huck L; Scherrer A; Terzi L; Johnson AE; Bernstein HD; Cusack S; Weichenrieder O; Strub K Nucleic Acids Res; 2004; 32(16):4915-24. PubMed ID: 15383645 [TBL] [Abstract][Full Text] [Related]
9. A highly conserved nucleotide in the Alu domain of SRP RNA mediates translation arrest through high affinity binding to SRP9/14. Chang DY; Newitt JA; Hsu K; Bernstein HD; Maraia RJ Nucleic Acids Res; 1997 Mar; 25(6):1117-22. PubMed ID: 9092618 [TBL] [Abstract][Full Text] [Related]
10. The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure. Strub K; Fornallaz M; Bui N RNA; 1999 Oct; 5(10):1333-47. PubMed ID: 10573124 [TBL] [Abstract][Full Text] [Related]
11. Hierarchical assembly of the Alu domain of the mammalian signal recognition particle. Weichenrieder O; Stehlin C; Kapp U; Birse DE; Timmins PA; Strub K; Cusack S RNA; 2001 May; 7(5):731-40. PubMed ID: 11350037 [TBL] [Abstract][Full Text] [Related]
12. Structure of the complete bacterial SRP Alu domain. Kempf G; Wild K; Sinning I Nucleic Acids Res; 2014 Oct; 42(19):12284-94. PubMed ID: 25270875 [TBL] [Abstract][Full Text] [Related]
13. Identification and comparative analysis of components from the signal recognition particle in protozoa and fungi. Rosenblad MA; Zwieb C; Samuelsson T BMC Genomics; 2004 Jan; 5(1):5. PubMed ID: 14720308 [TBL] [Abstract][Full Text] [Related]
14. Structure of the SRP19 RNA complex and implications for signal recognition particle assembly. Hainzl T; Huang S; Sauer-Eriksson AE Nature; 2002 Jun; 417(6890):767-71. PubMed ID: 12050674 [TBL] [Abstract][Full Text] [Related]
15. Saccharomyces SRP RNA secondary structures: a conserved S-domain and extended Alu-domain. Van Nues RW; Brown JD RNA; 2004 Jan; 10(1):75-89. PubMed ID: 14681587 [TBL] [Abstract][Full Text] [Related]
16. Assembly of the Alu domain of the signal recognition particle (SRP): dimerization of the two protein components is required for efficient binding to SRP RNA. Strub K; Walter P Mol Cell Biol; 1990 Feb; 10(2):777-84. PubMed ID: 2153922 [TBL] [Abstract][Full Text] [Related]
17. Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation. Soni K; Kempf G; Manalastas-Cantos K; Hendricks A; Flemming D; Guizetti J; Simon B; Frischknecht F; Svergun DI; Wild K; Sinning I Commun Biol; 2021 May; 4(1):600. PubMed ID: 34017052 [TBL] [Abstract][Full Text] [Related]
18. SRP RNA remodeling by SRP68 explains its role in protein translocation. Grotwinkel JT; Wild K; Segnitz B; Sinning I Science; 2014 Apr; 344(6179):101-4. PubMed ID: 24700861 [TBL] [Abstract][Full Text] [Related]
19. Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions. Beckert B; Kedrov A; Sohmen D; Kempf G; Wild K; Sinning I; Stahlberg H; Wilson DN; Beckmann R Nat Struct Mol Biol; 2015 Oct; 22(10):767-73. PubMed ID: 26344568 [TBL] [Abstract][Full Text] [Related]
20. Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Siegel V; Walter P Nature; 1986 Mar 6-12; 320(6057):81-4. PubMed ID: 2419765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]