BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25336638)

  • 41. Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans.
    Matthies A; Rajagopalan KV; Mendel RR; Leimkühler S
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):5946-51. PubMed ID: 15073332
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains.
    Hänzelmann P; Dahl JU; Kuper J; Urban A; Müller-Theissen U; Leimkühler S; Schindelin H
    Protein Sci; 2009 Dec; 18(12):2480-91. PubMed ID: 19798741
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Role of SufS Is Restricted to Fe-S Cluster Biosynthesis in Escherichia coli.
    Bühning M; Valleriani A; Leimkühler S
    Biochemistry; 2017 Apr; 56(14):1987-2000. PubMed ID: 28323419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3-Mercaptopyruvate sulfur transferase is a protein persulfidase.
    Pedre B; Talwar D; Barayeu U; Schilling D; Luzarowski M; Sokolowski M; Glatt S; Dick TP
    Nat Chem Biol; 2023 Apr; 19(4):507-517. PubMed ID: 36732619
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular basis of function and the unusual antioxidant activity of a cyanobacterial cysteine desulfurase.
    Banerjee M; Chakravarty D; Ballal A
    Biochem J; 2017 Jul; 474(14):2435-2447. PubMed ID: 28592683
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions.
    Shi R; Proteau A; Villarroya M; Moukadiri I; Zhang L; Trempe JF; Matte A; Armengod ME; Cygler M
    PLoS Biol; 2010 Apr; 8(4):e1000354. PubMed ID: 20404999
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SseA, a 3-mercaptopyruvate sulfurtransferase from Escherichia coli: crystallization and preliminary crystallographic data.
    Spallarossa A; Carpen A; Forlani F; Pagani S; Bolognesi M; Bordo D
    Acta Crystallogr D Biol Crystallogr; 2003 Jan; 59(Pt 1):168-70. PubMed ID: 12499560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain.
    Kimura Y; Toyofuku Y; Koike S; Shibuya N; Nagahara N; Lefer D; Ogasawara Y; Kimura H
    Sci Rep; 2015 Oct; 5():14774. PubMed ID: 26437775
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide.
    Mikami Y; Shibuya N; Kimura Y; Nagahara N; Ogasawara Y; Kimura H
    Biochem J; 2011 Nov; 439(3):479-85. PubMed ID: 21732914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.
    Höfler S; Lorenz C; Busch T; Brinkkötter M; Tohge T; Fernie AR; Braun HP; Hildebrandt TM
    Physiol Plant; 2016 Jul; 157(3):352-66. PubMed ID: 27105581
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation.
    Biederbick A; Stehling O; Rösser R; Niggemeyer B; Nakai Y; Elsässer HP; Lill R
    Mol Cell Biol; 2006 Aug; 26(15):5675-87. PubMed ID: 16847322
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mobilization of sulfane sulfur from cysteine desulfurases to the Azotobacter vinelandii sulfurtransferase RhdA.
    Cartini F; Remelli W; Dos Santos PC; Papenbrock J; Pagani S; Forlani F
    Amino Acids; 2011 Jun; 41(1):141-50. PubMed ID: 20213443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mammalian tRNA sulfurtransferase: properties of the enzyme in rat liver.
    Harris CL
    Nucleic Acids Res; 1978 Feb; 5(2):599-613. PubMed ID: 24834
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biosynthesis of Sulfur-Containing Small Biomolecules in Plants.
    Nakai Y; Maruyama-Nakashita A
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32423011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mitochondrial tRNA import in Trypanosoma brucei is independent of thiolation and the Rieske protein.
    Paris Z; Rubio MA; Lukes J; Alfonzo JD
    RNA; 2009 Jul; 15(7):1398-406. PubMed ID: 19465685
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning, overexpression, and site-directed mutagenesis.
    Nagahara N; Nishino T
    J Biol Chem; 1996 Nov; 271(44):27395-401. PubMed ID: 8910318
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An ancient type of MnmA protein is an iron-sulfur cluster-dependent sulfurtransferase for tRNA anticodons.
    Shigi N; Horitani M; Miyauchi K; Suzuki T; Kuroki M
    RNA; 2020 Mar; 26(3):240-250. PubMed ID: 31801798
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rhodanese-Like Domain Protein UbaC and Its Role in Ubiquitin-Like Protein Modification and Sulfur Mobilization in Archaea.
    Hepowit NL; Maupin-Furlow JA
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31085691
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae.
    Mühlenhoff U; Balk J; Richhardt N; Kaiser JT; Sipos K; Kispal G; Lill R
    J Biol Chem; 2004 Aug; 279(35):36906-15. PubMed ID: 15220327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.