These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 25337410)
21. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam? Ding GX; Duzenli C; Kalach NI Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221 [TBL] [Abstract][Full Text] [Related]
22. Simulation of dose distribution and secondary particle production in proton therapy of brain tumor. Hashemi Z; Tatari M; Naik H Rep Pract Oncol Radiother; 2020; 25(6):927-933. PubMed ID: 33088228 [TBL] [Abstract][Full Text] [Related]
23. Calculation of energy deposition, photon and neutron production in proton therapy of thyroid gland using MCNPX. Mowlavi AA; Fornasie MR; de Denaro M Appl Radiat Isot; 2011 Jan; 69(1):122-5. PubMed ID: 20817539 [TBL] [Abstract][Full Text] [Related]
24. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions. Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920 [TBL] [Abstract][Full Text] [Related]
26. The determination of a dose deposited in reference medium due to (p,n) reaction occurring during proton therapy. Dawidowska A; Ferszt MP; Konefał A Rep Pract Oncol Radiother; 2014 May; 19(Suppl):S3-S8. PubMed ID: 28443192 [TBL] [Abstract][Full Text] [Related]
27. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise. Stolarczyk L; Trinkl S; Romero-Expósito M; Mojżeszek N; Ambrozova I; Domingo C; Davídková M; Farah J; Kłodowska M; Knežević Ž; Liszka M; Majer M; Miljanić S; Ploc O; Schwarz M; Harrison RM; Olko P Phys Med Biol; 2018 Apr; 63(8):085017. PubMed ID: 29509148 [TBL] [Abstract][Full Text] [Related]
28. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy. Sengbusch E; Pérez-Andújar A; DeLuca PM; Mackie TR Med Phys; 2009 Feb; 36(2):364-72. PubMed ID: 19291975 [TBL] [Abstract][Full Text] [Related]
29. Microdosimetric study for secondary neutrons in phantom produced by a 290 MeV/nucleon carbon beam. Endo S; Tanaka K; Takada M; Onizuka Y; Miyahara N; Sato T; Ishikawa M; Maeda N; Hayabuchi N; Shizuma K; Hoshi M Med Phys; 2007 Sep; 34(9):3571-8. PubMed ID: 17926960 [TBL] [Abstract][Full Text] [Related]
30. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator. Puchalska M; Sihver L Phys Med Biol; 2015 Jun; 60(12):N261-70. PubMed ID: 26057186 [TBL] [Abstract][Full Text] [Related]
31. A pencil beam algorithm for magnetic resonance image-guided proton therapy. Padilla-Cabal F; Georg D; Fuchs H Med Phys; 2018 May; 45(5):2195-2204. PubMed ID: 29532490 [TBL] [Abstract][Full Text] [Related]
32. Secondary neutron and photon dose in proton therapy. Agosteo S; Birattari C; Caravaggio M; Silari M; Tosi G Radiother Oncol; 1998 Sep; 48(3):293-305. PubMed ID: 9925249 [TBL] [Abstract][Full Text] [Related]
33. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE. Schneider U; Hälg RA; Baiocco G; Lomax T Phys Med Biol; 2016 Aug; 61(16):6231-42. PubMed ID: 27486057 [TBL] [Abstract][Full Text] [Related]
34. A Monte Carlo model for out-of-field dose calculation from high-energy photon therapy. Kry SF; Titt U; Followill D; Pönisch F; Vassiliev ON; White RA; Stovall M; Salehpour M Med Phys; 2007 Sep; 34(9):3489-99. PubMed ID: 17926952 [TBL] [Abstract][Full Text] [Related]
35. Shielding design for a laser-accelerated proton therapy system. Fan J; Luo W; Fourkal E; Lin T; Li J; Veltchev I; Ma CM Phys Med Biol; 2007 Jul; 52(13):3913-30. PubMed ID: 17664585 [TBL] [Abstract][Full Text] [Related]
36. Fast neutron energy based modelling of biological effectiveness with implications for proton and ion beams. Jones B Phys Med Biol; 2021 Feb; 66(4):045028. PubMed ID: 33472183 [TBL] [Abstract][Full Text] [Related]
37. Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit. Pshenichnov I; Mishustin I; Greiner W Phys Med Biol; 2005 Dec; 50(23):5493-507. PubMed ID: 16306647 [TBL] [Abstract][Full Text] [Related]
38. Neutron dose equivalent and neutron spectra in tissue for clinical linacs operating at 15, 18 and 20 MV. Martínez-Ovalle SA; Barquero R; Gómez-Ros JM; Lallena AM Radiat Prot Dosimetry; 2011 Nov; 147(4):498-511. PubMed ID: 21233098 [TBL] [Abstract][Full Text] [Related]
39. Personalized 3D-printed anthropomorphic whole-body phantom irradiated by protons, photons, and neutrons. Tillery H; Moore M; Gallagher KJ; Taddei PJ; Leuro E; Argento D; Moffitt G; Kranz M; Carey M; Heymsfield SB; Newhauser WD Biomed Phys Eng Express; 2022 Feb; 8(2):. PubMed ID: 35045408 [TBL] [Abstract][Full Text] [Related]
40. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy. Heo S; Yoo S; Song Y; Kim E; Shin J; Han S; Jung W; Nam S; Lee R; Lee K; Cho S Radiat Prot Dosimetry; 2017 Jul; 175(3):297-303. PubMed ID: 27885084 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]