BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 25337694)

  • 1. Atomistic simulations of electric field effects on the Young's modulus of metal nanowires.
    Ben X; Park HS
    Nanotechnology; 2014 Nov; 25(45):455704. PubMed ID: 25337694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic surface strain in single crystalline cobalt nanowires and its impact on the diameter-dependent Young's modulus.
    Huang X; Li G; Kong LB; Huang YZ; Wu T
    Nanoscale; 2013 Dec; 5(23):11643-8. PubMed ID: 24096984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous surface states modify the size-dependent mechanical properties and fracture of silica nanowires.
    Tang C; Dávila LP
    Nanotechnology; 2014 Oct; 25(43):435702. PubMed ID: 25298024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic properties of GaN nanowires: revealing the influence of planar defects on young's modulus at nanoscale.
    Dai S; Zhao J; He MR; Wang X; Wan J; Shan Z; Zhu J
    Nano Lett; 2015 Jan; 15(1):8-15. PubMed ID: 25427143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent Young's modulus in ZnO nanowires with strong surface atomic bonds.
    Fan S; Bi S; Li Q; Guo Q; Liu J; Ouyang Z; Jiang C; Song J
    Nanotechnology; 2018 Mar; 29(12):125702. PubMed ID: 29350192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon resonance-induced stiffening of silver nanowires.
    Ben X; Park HS
    Sci Rep; 2015 May; 5():10574. PubMed ID: 26024426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cross-sectional area and aspect ratio coupled with orientation on mechanical properties and deformation behavior of Cu nanowires.
    Cao H; Chen W; Rui Z; Yan C
    Nanotechnology; 2022 Jun; 33(36):. PubMed ID: 34844233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beat phenomena in metal nanowires, and their implications for resonance-based elastic property measurements.
    Zhan H; Gu Y; Park HS
    Nanoscale; 2012 Nov; 4(21):6779-85. PubMed ID: 22996047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between surface stress and apparent Young's modulus of top-down silicon nanowires.
    Pennelli G; Totaro M; Nannini A
    ACS Nano; 2012 Dec; 6(12):10727-34. PubMed ID: 23130945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Young's modulus of Sb2S3 nanowires by in situ resonance and bending methods.
    Jasulaneca L; Meija R; Livshits AI; Prikulis J; Biswas S; Holmes JD; Erts D
    Beilstein J Nanotechnol; 2016; 7():278-83. PubMed ID: 26977384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires.
    Zheng YG; Zhao YT; Ye HF; Zhang HW
    Nanotechnology; 2014 Aug; 25(31):315701. PubMed ID: 25030768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational and experimental investigation of the mechanical properties of single ZnTe nanowires.
    Davami K; Mortazavi B; Ghassemi HM; Yassar RS; Lee JS; Rémond Y; Meyyappan M
    Nanoscale; 2012 Feb; 4(3):897-903. PubMed ID: 22173853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Reorientation of Graphene Platelets (GPLs) on Young's Modulus of Polymer Nanocomposites under Uni-Axial Stretching.
    Feng C; Wang Y; Kitipornchai S; Yang J
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphologies, Young's Modulus and Resistivity of High Aspect Ratio Tungsten Nanowires.
    Gao J; Luo J; Geng H; Cui K; Zhao Z; Liu L
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32854175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insufficiency of the Young's modulus for illustrating the mechanical behavior of GaN nanowires.
    Kouhpanji MRZ; Behzadirad M; Feezell D; Busani T
    Nanotechnology; 2018 May; 29(20):205706. PubMed ID: 29473824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-sensitive Young's modulus of kinked silicon nanowires.
    Jiang JW; Zhao JH; Rabczuk T
    Nanotechnology; 2013 May; 24(18):185702. PubMed ID: 23575466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ observation of size-scale effects on the mechanical properties of ZnO nanowires.
    Asthana A; Momeni K; Prasad A; Yap YK; Yassar RS
    Nanotechnology; 2011 Jul; 22(26):265712. PubMed ID: 21586815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative Thermal Expansion of Ultrathin Metal Nanowires: A Computational Study.
    Ho DT; Kwon SY; Park HS; Kim SY
    Nano Lett; 2017 Aug; 17(8):5113-5118. PubMed ID: 28678511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The elastic moduli of oriented tin oxide nanowires.
    Barth S; Harnagea C; Mathur S; Rosei F
    Nanotechnology; 2009 Mar; 20(11):115705. PubMed ID: 19420453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the size-dependent elastic properties of ZnO nanowires and nanotubes.
    Hu J; Liu XW; Pan BC
    Nanotechnology; 2008 Jul; 19(28):285710. PubMed ID: 21828744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.