These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25337772)

  • 1. Electrostatic actuated strain engineering in monolithically integrated VLS grown silicon nanowires.
    Wagesreither S; Bertagnolli E; Kawase S; Isono Y; Lugstein A
    Nanotechnology; 2014 Nov; 25(45):455705. PubMed ID: 25337772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous piezoresistance effect in ultrastrained silicon nanowires.
    Lugstein A; Steinmair M; Steiger A; Kosina H; Bertagnolli E
    Nano Lett; 2010 Aug; 10(8):3204-8. PubMed ID: 20698638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of anomalous piezoresistive effects in VLS grown Si nanowires.
    Winkler K; Bertagnolli E; Lugstein A
    Nano Lett; 2015 Mar; 15(3):1780-5. PubMed ID: 25651106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.
    Habicht S; Zhao QT; Feste SF; Knoll L; Trellenkamp S; Ghyselen B; Mantl S
    Nanotechnology; 2010 Mar; 21(10):105701. PubMed ID: 20154367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable approach for vertical device integration of epitaxial nanowires.
    Lugstein A; Steinmair M; Henkel C; Bertagnolli E
    Nano Lett; 2009 May; 9(5):1830-4. PubMed ID: 19323479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the electro-optical properties of germanium nanowires by tensile strain.
    Greil J; Lugstein A; Zeiner C; Strasser G; Bertagnolli E
    Nano Lett; 2012 Dec; 12(12):6230-4. PubMed ID: 23146072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guiding vapor-liquid-solid nanowire growth using SiO2.
    Quitoriano NJ; Wu W; Kamins TI
    Nanotechnology; 2009 Apr; 20(14):145303. PubMed ID: 19420522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth time-dependent density and surface evolution of silicon nanowires in a vapor-liquid-solid process.
    Lee CY; Kim GS; Lee SY; Kim TH; Seo DW; Lee SK
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6946-52. PubMed ID: 22103103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition and local strain mapping in Au-catalyzed axial Si/Ge nanowires.
    Vincent L; Boukhicha R; Cherkashin N; Reboh S; Patriarche G; Renard C; Yam V; Fossard F; Bouchier D
    Nanotechnology; 2012 Oct; 23(39):395701. PubMed ID: 22962281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of silicon nanowires studied by advanced transmission electron microscopy.
    Agati M; Amiard G; Borgne VL; Castrucci P; Dolbec R; De Crescenzi M; El Khakani MA; Boninelli S
    Beilstein J Nanotechnol; 2017; 8():440-445. PubMed ID: 28326234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ex situ vapor phase boron doping of silicon nanowires using BBr3.
    Doerk GS; Lestari G; Liu F; Carraro C; Maboudian R
    Nanoscale; 2010 Jul; 2(7):1165-70. PubMed ID: 20648344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires.
    Wang Y; Lew KK; Ho TT; Pan L; Novak SW; Dickey EC; Redwing JM; Mayer TS
    Nano Lett; 2005 Nov; 5(11):2139-43. PubMed ID: 16277441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly end-doped silicon nanowires for field-effect transistors on flexible substrates.
    Celle C; Carella A; Mariolle D; Chevalier N; Rouvière E; Simonato JP
    Nanoscale; 2010 May; 2(5):677-80. PubMed ID: 20648308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of silicon nanowires on H-terminated Si {111} surface templates studied by transmission electron microscopy.
    Ozaki N; Ohno Y; Kikkawa J; Takeda S
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i25-9. PubMed ID: 16157636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor.
    Molnar W; Lugstein A; Wojcik T; Pongratz P; Auner N; Bauch C; Bertagnolli E
    Beilstein J Nanotechnol; 2012; 3():564-9. PubMed ID: 23019552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy.
    Bae SS; Prokopuk N; Quitoriano NJ; Adams SM; Ragan R
    Nanotechnology; 2012 Oct; 23(40):405706. PubMed ID: 22995919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Si nanowire directly grown on a liquid metal substrate--towards wafer scale transferable nanowire arrays with improved visible-light sterilization.
    Wang H; Wang JT; Ou XM; Lee CS; Zhang XH
    Nanotechnology; 2014 Apr; 25(14):145601. PubMed ID: 24622242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused electron beam induced deposition of gold catalyst templates for Si-nanowire synthesis.
    Hochleitner G; Steinmair M; Lugstein A; Roediger P; Wanzenboeck HD; Bertagnolli E
    Nanotechnology; 2011 Jan; 22(1):015302. PubMed ID: 21135454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-effect transistors based on silicon nanowire arrays: effect of the good and the bad silicon nanowires.
    Wang B; Stelzner T; Dirawi R; Assad O; Shehada N; Christiansen S; Haick H
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4251-8. PubMed ID: 22817278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.