These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25337782)

  • 1. Ultrastrong coupling of plasmons and excitons in a nanoshell.
    Cacciola A; Di Stefano O; Stassi R; Saija R; Savasta S
    ACS Nano; 2014 Nov; 8(11):11483-92. PubMed ID: 25337782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Phonon Polaritons.
    Németh G; Otsuka K; Datz D; Pekker Á; Maruyama S; Borondics F; Kamarás K
    Nano Lett; 2022 Apr; 22(8):3495-3502. PubMed ID: 35315666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plexcitonic crystals: a tunable platform for light-matter interactions.
    Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Express; 2014 Sep; 22(18):21912-20. PubMed ID: 25321566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.
    Balci S; Kocabas C
    Opt Lett; 2015 Jul; 40(14):3424-7. PubMed ID: 26176485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.
    Zhou N; Yuan M; Gao Y; Li D; Yang D
    ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiative Pumping and Propagation of Plexcitons in Diffractive Plasmonic Crystals.
    Zakharko Y; Rother M; Graf A; Hähnlein B; Brohmann M; Pezoldt J; Zaumseil J
    Nano Lett; 2018 Aug; 18(8):4927-4933. PubMed ID: 29995428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.
    Hung YT; Huang CB; Huang JS
    Opt Express; 2012 Aug; 20(18):20342-55. PubMed ID: 23037085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures.
    Sun J; Li Y; Hu H; Chen W; Zheng D; Zhang S; Xu H
    Nanoscale; 2021 Mar; 13(8):4408-4419. PubMed ID: 33605947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong coupling between a dipole emitter and localized plasmons: enhancement by sharp silver tips.
    D'Agostino S; Alpeggiani F; Andreani LC
    Opt Express; 2013 Nov; 21(23):27602-10. PubMed ID: 24514278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser assisted synthesis of anisotropic metal nanocrystals and strong light-matter coupling in decahedral bimetallic nanocrystals.
    Balci FM; Sarisozen S; Polat N; Guvenc CM; Karadeniz U; Tertemiz A; Balci S
    Nanoscale Adv; 2021 Mar; 3(6):1674-1681. PubMed ID: 36132566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Coupling of Two-Dimensional Excitons and Plasmonic Photonic Crystals: Microscopic Theory Reveals Triplet Spectra.
    Greten L; Salzwedel R; Göde T; Greten D; Reich S; Hughes S; Selig M; Knorr A
    ACS Photonics; 2024 Apr; 11(4):1396-1411. PubMed ID: 38645994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions.
    Baranov DG; Munkhbat B; Zhukova E; Bisht A; Canales A; Rousseaux B; Johansson G; Antosiewicz TJ; Shegai T
    Nat Commun; 2020 Jun; 11(1):2715. PubMed ID: 32483151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong coupling between surface plasmons and excitons in an organic semiconductor.
    Bellessa J; Bonnand C; Plenet JC; Mugnier J
    Phys Rev Lett; 2004 Jul; 93(3):036404. PubMed ID: 15323846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal-insulator-metal nanocavities in near-ultraviolet spectrum.
    Li L; Wang L; Du C; Guan Z; Xiang Y; Wu W; Ren M; Zhang X; Tang A; Cai W; Xu J
    Nanoscale; 2020 Feb; 12(5):3112-3120. PubMed ID: 31965128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong plasmon-exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe
    Yan X; Wei H
    Nanoscale; 2020 May; 12(17):9708-9716. PubMed ID: 32323700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures.
    Vasa P; Pomraenke R; Cirmi G; De Re E; Wang W; Schwieger S; Leipold D; Runge E; Cerullo G; Lienau C
    ACS Nano; 2010 Dec; 4(12):7559-65. PubMed ID: 21082799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Emission near Metal Interfaces: The Polaritonic Regime.
    Yuen-Zhou J; Saikin SK; Menon VM
    J Phys Chem Lett; 2018 Nov; 9(22):6511-6516. PubMed ID: 30372085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-cycle switch-on of ultrastrong light-matter interaction.
    Günter G; Anappara AA; Hees J; Sell A; Biasiol G; Sorba L; De Liberato S; Ciuti C; Tredicucci A; Leitenstorfer A; Huber R
    Nature; 2009 Mar; 458(7235):178-81. PubMed ID: 19279631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application.
    Firoozi A; Amphawan A; Khordad R; Mohammadi A; Jalali T; Edet CO; Ali N
    Sci Rep; 2023 Jul; 13(1):11325. PubMed ID: 37443203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.