These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25337872)

  • 1. Water-soluble monodisperse core-shell nanorings: their tailorable preparation and interactions with oppositely charged spheres of a similar diameter.
    Zhang K; Miao H; Chen D
    J Am Chem Soc; 2014 Nov; 136(45):15933-41. PubMed ID: 25337872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Fabrication of Monodisperse Silica Nanorings from Hollow Spheres - A Template for Core-Shell Nanorings.
    Zhong K; Li J; Liu L; Brullot W; Bloemen M; Volodin A; Song K; Van Dorpe P; Verellen N; Clays K
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10451-8. PubMed ID: 27031364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydopamine spheres as active templates for convenient synthesis of various nanostructures.
    Yan J; Yang L; Lin MF; Ma J; Lu X; Lee PS
    Small; 2013 Feb; 9(4):596-603. PubMed ID: 23117928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal crystals of core-shell type spheres with poly(styrene) core and poly(ethylene oxide) shell.
    Okamoto J; Kimura H; Tsuchida A; Okubo T; Ito K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):231-5. PubMed ID: 17254758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH responsive self assemblies from an A(n)-core-(B-b-C)n heteroarm star block terpolymer bearing oppositely charged segments.
    Iatridi Z; Tsitsilianis C
    Chem Commun (Camb); 2011 May; 47(19):5560-2. PubMed ID: 21461436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space.
    Serpell CJ; Edwardson TG; Chidchob P; Carneiro KM; Sleiman HF
    J Am Chem Soc; 2014 Nov; 136(44):15767-74. PubMed ID: 25325677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The preparation of colloidally stable, water-soluble, biocompatible, semiconductor nanocrystals with a small hydrodynamic diameter.
    Lees EE; Nguyen TL; Clayton AH; Muir BW; Mulvaney P
    ACS Nano; 2009 May; 3(5):1121-8. PubMed ID: 19388661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyion complex nanomaterials from block polyelectrolyte micelles and linear polyelectrolytes of opposite charge: 1. Solution behavior.
    Chelushkin PS; Lysenko EA; Bronich TK; Eisenberg A; Kabanov VA; Kabanov AV
    J Phys Chem B; 2007 Jul; 111(29):8419-25. PubMed ID: 17441751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled release of ionic drugs from complex micelles with charged channels.
    Liu X; Ma R; Shen J; Xu Y; An Y; Shi L
    Biomacromolecules; 2012 May; 13(5):1307-14. PubMed ID: 22428577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous compatible polymers in bionanotechnology.
    Carter SR; Rimmer S
    IEE Proc Nanobiotechnol; 2005 Oct; 152(5):169-76. PubMed ID: 16441176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembling nanocomplexes from insulin and water-soluble branched polyesters, poly[(vinyl-3-(diethylamino)- propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft- poly(L-lactic acid): a novel carrier for transmucosal delivery of peptides.
    Simon M; Wittmar M; Bakowsky U; Kissel T
    Bioconjug Chem; 2004; 15(4):841-9. PubMed ID: 15264872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to fabrication of metal nanoring arrays.
    Bayati M; Patoka P; Giersig M; Savinova ER
    Langmuir; 2010 Mar; 26(5):3549-54. PubMed ID: 20104920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-soluble complexes from random copolymer and oppositely charged surfactant. 2. Complexes of poly(ethylene glycol)-based cationic random copolymer and bile salts.
    Nisha CK; Manorama SV; Kizhakkedathu JN; Maiti S
    Langmuir; 2004 Sep; 20(20):8468-75. PubMed ID: 15379462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating the morphologies of cylindrical polyelectrolyte brushes by forming interpolyelectrolyte complexes with oppositely charged linear polyelectrolytes: an AFM study.
    Xu Y; Borisov OV; Ballauff M; Müller AH
    Langmuir; 2010 May; 26(10):6919-26. PubMed ID: 20229989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Well-defined organic nanotubes from multicomponent bottlebrush copolymers.
    Huang K; Rzayev J
    J Am Chem Soc; 2009 May; 131(19):6880-5. PubMed ID: 19397329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodisperse core-shell structured up-conversion Yb(OH)CO₃@YbPO₄:Er³+ hollow spheres as drug carriers.
    Xu Z; Ma P; Li C; Hou Z; Zhai X; Huang S; Lin J
    Biomaterials; 2011 Jun; 32(17):4161-73. PubMed ID: 21435712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis.
    Hong JY; Yoon H; Jang J
    Small; 2010 Mar; 6(5):679-86. PubMed ID: 20127667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly.
    Nunes SP; Behzad AR; Hooghan B; Sougrat R; Karunakaran M; Pradeep N; Vainio U; Peinemann KV
    ACS Nano; 2011 May; 5(5):3516-22. PubMed ID: 21504167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant self-assembly in oppositely charged polymer networks. Theory.
    Hansson P
    J Phys Chem B; 2009 Oct; 113(39):12903-15. PubMed ID: 19728696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.