BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

875 related articles for article (PubMed ID: 25337879)

  • 1. Rapid modelling of cooperating genetic events in cancer through somatic genome editing.
    Sánchez-Rivera FJ; Papagiannakopoulos T; Romero R; Tammela T; Bauer MR; Bhutkar A; Joshi NS; Subbaraj L; Bronson RT; Xue W; Jacks T
    Nature; 2014 Dec; 516(7531):428-31. PubMed ID: 25337879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 knockin mice for genome editing and cancer modeling.
    Platt RJ; Chen S; Zhou Y; Yim MJ; Swiech L; Kempton HR; Dahlman JE; Parnas O; Eisenhaure TM; Jovanovic M; Graham DB; Jhunjhunwala S; Heidenreich M; Xavier RJ; Langer R; Anderson DG; Hacohen N; Regev A; Feng G; Sharp PA; Zhang F
    Cell; 2014 Oct; 159(2):440-55. PubMed ID: 25263330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P53 ICE CRIM mouse: a tool to generate mutant allelic series in somatic cells and germ lines for cancer studies.
    Fan HH; Yu IS; Lin YH; Wang SY; Liaw YH; Chen PL; Yang TL; Lin SW; Chen YT
    FASEB J; 2019 Apr; 33(4):5571-5584. PubMed ID: 30640520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination.
    Ideno N; Yamaguchi H; Okumura T; Huang J; Brun MJ; Ho ML; Suh J; Gupta S; Maitra A; Ghosh B
    Lab Invest; 2019 Jul; 99(8):1233-1244. PubMed ID: 30728464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.
    El Refaey M; Xu L; Gao Y; Canan BD; Adesanya TMA; Warner SC; Akagi K; Symer DE; Mohler PJ; Ma J; Janssen PML; Han R
    Circ Res; 2017 Sep; 121(8):923-929. PubMed ID: 28790199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 editing of the genome for cancer modeling.
    Guernet A; Grumolato L
    Methods; 2017 May; 121-122():130-137. PubMed ID: 28288827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of CRISPR-Cas system in gene therapy: Pre-clinical progress in animal model.
    Guan L; Han Y; Zhu S; Lin J
    DNA Repair (Amst); 2016 Oct; 46():1-8. PubMed ID: 27519625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing.
    Chiou SH; Winters IP; Wang J; Naranjo S; Dudgeon C; Tamburini FB; Brady JJ; Yang D; Grüner BM; Chuang CH; Caswell DR; Zeng H; Chu P; Kim GE; Carpizo DR; Kim SK; Winslow MM
    Genes Dev; 2015 Jul; 29(14):1576-85. PubMed ID: 26178787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.
    McFadden DG; Politi K; Bhutkar A; Chen FK; Song X; Pirun M; Santiago PM; Kim-Kiselak C; Platt JT; Lee E; Hodges E; Rosebrock AP; Bronson RT; Socci ND; Hannon GJ; Jacks T; Varmus H
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6409-E6417. PubMed ID: 27702896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9: from Genome Editing to Cancer Research.
    Chen S; Sun H; Miao K; Deng CX
    Int J Biol Sci; 2016; 12(12):1427-1436. PubMed ID: 27994508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9 therapies in experimental mouse models of cancer.
    Estêvão D; Rios Costa N; da Costa RG; Medeiros R
    Future Oncol; 2018 Aug; 14(20):2083-2095. PubMed ID: 30027767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
    Wang X; Raghavan A; Chen T; Qiao L; Zhang Y; Ding Q; Musunuru K
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):783-6. PubMed ID: 26941020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-mediated direct mutation of cancer genes in the mouse liver.
    Xue W; Chen S; Yin H; Tammela T; Papagiannakopoulos T; Joshi NS; Cai W; Yang G; Bronson R; Crowley DG; Zhang F; Anderson DG; Sharp PA; Jacks T
    Nature; 2014 Oct; 514(7522):380-4. PubMed ID: 25119044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma.
    Engelholm LH; Riaz A; Serra D; Dagnæs-Hansen F; Johansen JV; Santoni-Rugiu E; Hansen SH; Niola F; Frödin M
    Gastroenterology; 2017 Dec; 153(6):1662-1673.e10. PubMed ID: 28923495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatic Genome Editing Goes Viral.
    Zafra MP; Dow LE
    Trends Mol Med; 2016 Oct; 22(10):831-833. PubMed ID: 27555346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer.
    Ng SR; Rideout WM; Akama-Garren EH; Bhutkar A; Mercer KL; Schenkel JM; Bronson RT; Jacks T
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):513-521. PubMed ID: 31871154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice.
    Rogers ZN; McFarland CD; Winters IP; Seoane JA; Brady JJ; Yoon S; Curtis C; Petrov DA; Winslow MM
    Nat Genet; 2018 Apr; 50(4):483-486. PubMed ID: 29610476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis.
    Romero R; Sayin VI; Davidson SM; Bauer MR; Singh SX; LeBoeuf SE; Karakousi TR; Ellis DC; Bhutkar A; Sánchez-Rivera FJ; Subbaraj L; Martinez B; Bronson RT; Prigge JR; Schmidt EE; Thomas CJ; Goparaju C; Davies A; Dolgalev I; Heguy A; Allaj V; Poirier JT; Moreira AL; Rudin CM; Pass HI; Vander Heiden MG; Jacks T; Papagiannakopoulos T
    Nat Med; 2017 Nov; 23(11):1362-1368. PubMed ID: 28967920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.