These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25337883)

  • 1. Spatially resolved magnetic field structure in the disk of a T Tauri star.
    Stephens IW; Looney LW; Kwon W; Fernández-López M; Hughes AM; Mundy LG; Crutcher RM; Li ZY; Rao R
    Nature; 2014 Oct; 514(7524):597-9. PubMed ID: 25337883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A measure of the size of the magnetospheric accretion region in TW Hydrae.
    GRAVITY Collaboration
    Nature; 2020 Aug; 584(7822):547-550. PubMed ID: 32848223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnostic value of far-IR water ice features in T Tauri disks.
    Kamp I; Scheepstra A; Min M; Klarmann L; Riviere-Marichalar P
    Astron Astrophys; 2018 Sep; 617():. PubMed ID: 30369620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A warped disk around an infant protostar.
    Sakai N; Hanawa T; Zhang Y; Higuchi AE; Ohashi S; Oya Y; Yamamoto S
    Nature; 2019 Jan; 565(7738):206-208. PubMed ID: 30598547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chemistry of disks around T Tauri and Herbig Ae/Be stars.
    Agúndez M; Roueff E; Le Petit F; Le Bourlot J
    Astron Astrophys; 2018 Aug; 616():. PubMed ID: 30185991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disk Accretion in the 10 Myr Old T Tauri Stars TW Hydrae and Hen 3-600A.
    Muzerolle J; Calvet N; Briceño C; Hartmann L; Hillenbrand L
    Astrophys J; 2000 May; 535(1):L47-L50. PubMed ID: 10829005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct detection of a magnetic field in the innermost regions of an accretion disk.
    Donati JF; Paletou F; Bouvier J; Ferreira J
    Nature; 2005 Nov; 438(7067):466-9. PubMed ID: 16306985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analogs of the early solar system.
    Koerner DW
    Orig Life Evol Biosph; 1997 Jun; 27(1-3):157-84. PubMed ID: 9150572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hot compact dust disk around a massive young stellar object.
    Kraus S; Hofmann KH; Menten KM; Schertl D; Weigelt G; Wyrowski F; Meilland A; Perraut K; Petrov R; Robbe-Dubois S; Schilke P; Testi L
    Nature; 2010 Jul; 466(7304):339-42. PubMed ID: 20631793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aligned grains and scattered light found in gaps of planet-forming disk.
    Stephens IW; Lin ZD; Fernández-López M; Li ZY; Looney LW; Yang H; Harrison R; Kataoka A; Carrasco-Gonzalez C; Okuzumi S; Tazaki R
    Nature; 2023 Nov; 623(7988):705-708. PubMed ID: 37968400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflected light from sand grains in the terrestrial zone of a protoplanetary disk.
    Herbst W; Hamilton CM; LeDuc K; Winn JN; Johns-Krull CM; Mundt R; Ibrahimov M
    Nature; 2008 Mar; 452(7184):194-7. PubMed ID: 18337817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength.
    Lee CF; Li ZY; Ho PTP; Hirano N; Zhang Q; Shang H
    Sci Adv; 2017 Apr; 3(4):e1602935. PubMed ID: 28439561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The magnetic nature of disk accretion onto black holes.
    Miller JM; Raymond J; Fabian A; Steeghs D; Homan J; Reynolds C; van der Klis M; Wijnands R
    Nature; 2006 Jun; 441(7096):953-5. PubMed ID: 16791188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible planet formation in the young, low-mass, multiple stellar system GG Tau A.
    Dutrey A; Di Folco E; Guilloteau S; Boehler Y; Bary J; Beck T; Beust H; Chapillon E; Gueth F; Huré JM; Pierens A; Piétu V; Simon M; Tang YW
    Nature; 2014 Oct; 514(7524):600-2. PubMed ID: 25355359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Evolution of the Angular Momentum Distribution during Star Formation.
    Tomisaka K
    Astrophys J; 2000 Jan; 528(1):L41-L44. PubMed ID: 10587491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. M stars as targets for terrestrial exoplanet searches and biosignature detection.
    Scalo J; Kaltenegger L; Segura A; Fridlund M; Ribas I; Kulikov YN; Grenfell JL; Rauer H; Odert P; Leitzinger M; Selsis F; Khodachenko ML; Eiroa C; Kasting J; Lammer H
    Astrobiology; 2007 Feb; 7(1):85-166. PubMed ID: 17407405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk.
    Eisner JA
    Nature; 2007 May; 447(7144):562-4. PubMed ID: 17538613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas Accretion within the Dust Cavity in AB Aur.
    Rivière-Marichalar P; Fuente A; Baruteau C; Neri R; Treviño-Morales SP; Carmona A; Agúndez M; Bachiller R
    Astrophys J Lett; 2019 Jul; 879(1):. PubMed ID: 31428298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rotating disk of gas and dust around a young counterpart to beta Pictoris.
    Mannings V; Koerner DW; Sargent AI
    Nature; 1997 Aug; 388(6642):555-7. PubMed ID: 9252187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A disk of dust and molecular gas around a high-mass protostar.
    Patel NA; Curiel S; Sridharan TK; Zhang Q; Hunter TR; Ho PT; Torrelles JM; Moran JM; Gómez JF; Anglada G
    Nature; 2005 Sep; 437(7055):109-11. PubMed ID: 16136136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.