These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25338009)

  • 21. Au NPs-enhanced surface plasmon resonance for sensitive detection of mercury(II) ions.
    Wang L; Li T; Du Y; Chen C; Li B; Zhou M; Dong S
    Biosens Bioelectron; 2010 Aug; 25(12):2622-6. PubMed ID: 20547052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly electrostatically-induced detection selectivity and sensitivity for a colloidal biosensor made of chitosan nanoparticle decorated with a few bare-surfaced gold nanorods.
    Jean RD; Cheng WD; Hsiao MH; Chou FH; Bow JS; Liu DM
    Biosens Bioelectron; 2014 Feb; 52():111-7. PubMed ID: 24035854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrafast studies of gold, nickel, and palladium nanorods.
    Sando GM; Berry AD; Owrutsky JC
    J Chem Phys; 2007 Aug; 127(7):074705. PubMed ID: 17718625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. General Sensitive Detecting Strategy of Ions through Plasmonic Resonance Energy Transfer from Gold Nanoparticles to Rhodamine Spirolactam.
    Gao MX; Zou HY; Li YF; Huang CZ
    Anal Chem; 2017 Feb; 89(3):1808-1814. PubMed ID: 28208282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker.
    Truong PL; Kim BW; Sim SJ
    Lab Chip; 2012 Mar; 12(6):1102-9. PubMed ID: 22298159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer.
    Xie HN; Larmour IA; Chen YC; Wark AW; Tileli V; McComb DW; Faulds K; Graham D
    Nanoscale; 2013 Jan; 5(2):765-71. PubMed ID: 23233034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared upconverting nanoparticles to gold nanorods and its application for the detection of thrombin.
    Yuan F; Chen H; Xu J; Zhang Y; Wu Y; Wang L
    Chemistry; 2014 Mar; 20(10):2888-94. PubMed ID: 24501010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cancer antigen 125 detection using the plasmon resonance scattering properties of gold nanorods.
    Zhang K; Shen X
    Analyst; 2013 Mar; 138(6):1828-34. PubMed ID: 23370308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzyme Activity Triggered Blocking of Plasmon Resonance Energy Transfer for Highly Selective Detection of Acid Phosphatase.
    Yan X; Xia C; Chen B; Li YF; Gao PF; Huang CZ
    Anal Chem; 2020 Jan; 92(2):2130-2135. PubMed ID: 31850751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A sensitive localized surface plasmon resonance sensor for determining mercury(II) ion using noble metal nanoparticles as probe.
    Bi N; Chen Y; Qi H; Zheng X; Chen Y; Liao X; Zhang H; Tian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():276-81. PubMed ID: 22647401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor.
    Truong PL; Cao C; Park S; Kim M; Sim SJ
    Lab Chip; 2011 Aug; 11(15):2591-7. PubMed ID: 21670836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensing capability of the localized surface plasmon resonance of gold nanorods.
    Chen CD; Cheng SF; Chau LK; Wang CR
    Biosens Bioelectron; 2007 Jan; 22(6):926-32. PubMed ID: 16697633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmon-Resonance-Energy-Transfer-Based Spectroscopy on Single Nanoparticles: Biomolecular Recognition and Enzyme Kinetics.
    Li SS; Kong QY; Zhang M; Yang F; Kang B; Xu JJ; Chen HY
    Anal Chem; 2018 Mar; 90(6):3833-3841. PubMed ID: 29489333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer.
    Li M; Wang Q; Shi X; Hornak LA; Wu N
    Anal Chem; 2011 Sep; 83(18):7061-5. PubMed ID: 21842845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution.
    Huang CC; Chang HT
    Anal Chem; 2006 Dec; 78(24):8332-8. PubMed ID: 17165824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor.
    Lin HY; Huang CH; Lu SH; Kuo IT; Chau LK
    Biosens Bioelectron; 2014 Jan; 51():371-8. PubMed ID: 24001513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bidirectional plasmonic coloration with gold nanoparticles by wavelength-switched photoredox reaction.
    Li W; Xu J; Zhou Q; Wang S; Feng Z; Hu D; Li X; Cao Y
    Nanoscale; 2018 Nov; 10(46):21910-21917. PubMed ID: 30431628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coherent stokes scattering from gold nanorods: critical dimensions and multicolor near-resonant plasmon excitation.
    Kim H; Herzing A; Michaels CA; Bryant GW; Stranick SJ
    Nanoscale; 2011 Oct; 3(10):4290-5. PubMed ID: 21912802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Particle Plasmonic Sensing of Nitric Oxide in Living Cells.
    Wang SM; Wang H; Gao H; Zhou J; Zhao W; Chen HY; Xu JJ
    Anal Chem; 2023 May; 95(17):7062-7069. PubMed ID: 37072883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.