These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25338060)

  • 1. Adsorption at liquid interfaces induces amyloid fibril bending and ring formation.
    Jordens S; Riley EE; Usov I; Isa L; Olmsted PD; Mezzenga R
    ACS Nano; 2014 Nov; 8(11):11071-9. PubMed ID: 25338060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging the gap between the nanostructural organization and macroscopic interfacial rheology of amyloid fibrils at liquid interfaces.
    Jordens S; Rühs PA; Sieber C; Isa L; Fischer P; Mezzenga R
    Langmuir; 2014 Aug; 30(33):10090-7. PubMed ID: 25100189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-equilibrium nature of two-dimensional isotropic and nematic coexistence in amyloid fibrils at liquid interfaces.
    Jordens S; Isa L; Usov I; Mezzenga R
    Nat Commun; 2013; 4():1917. PubMed ID: 23715276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nematic field transfer in a two-dimensional protein fibril assembly.
    Jordens S; Schwenke K; Usov I; Del Gado E; Mezzenga R
    Soft Matter; 2016 Feb; 12(6):1830-5. PubMed ID: 26738771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disassembly and reassembly of amyloid fibrils in water-ethanol mixtures.
    Jordens S; Adamcik J; Amar-Yuli I; Mezzenga R
    Biomacromolecules; 2011 Jan; 12(1):187-93. PubMed ID: 21142059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism.
    VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH
    J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled amyloid fibrils with controllable conformational heterogeneity.
    Lee G; Lee W; Lee H; Lee CY; Eom K; Kwon T
    Sci Rep; 2015 Nov; 5():16220. PubMed ID: 26592772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal behavior in the mesoscale properties of amyloid fibrils.
    Assenza S; Adamcik J; Mezzenga R; De Los Rios P
    Phys Rev Lett; 2014 Dec; 113(26):268103. PubMed ID: 25615390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscopic properties of semiflexible amyloid fibrils.
    Sagis LM; Veerman C; van der Linden E
    Langmuir; 2004 Feb; 20(3):924-7. PubMed ID: 15773124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear flow induces amyloid fibril formation.
    Hill EK; Krebs B; Goodall DG; Howlett GJ; Dunstan DE
    Biomacromolecules; 2006 Jan; 7(1):10-3. PubMed ID: 16398490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elasticity in Physically Cross-Linked Amyloid Fibril Networks.
    Cao Y; Bolisetty S; Adamcik J; Mezzenga R
    Phys Rev Lett; 2018 Apr; 120(15):158103. PubMed ID: 29756901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelation, phase behavior, and dynamics of β-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths.
    Bolisetty S; Harnau L; Jung JM; Mezzenga R
    Biomacromolecules; 2012 Oct; 13(10):3241-52. PubMed ID: 22924940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.
    Pan K; Zhong Q
    Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effects of β-ionone on amyloid fibril formation of β-lactoglobulin.
    Ma B; You X; Lu F
    Int J Biol Macromol; 2014 Mar; 64():162-7. PubMed ID: 24325860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor.
    Sasaki N; Saitoh Y; Sharma RK; Furusawa K
    Int J Biol Macromol; 2016 Nov; 92():240-245. PubMed ID: 27411296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of dietary antioxidant (-)-epicatechin in the development of β-lactoglobulin fibrils.
    Carbonaro M; Di Venere A; Filabozzi A; Maselli P; Minicozzi V; Morante S; Nicolai E; Nucara A; Placidi E; Stellato F
    Biochim Biophys Acta; 2016 Jul; 1864(7):766-72. PubMed ID: 27049464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple steps during the formation of beta-lactoglobulin fibrils.
    Arnaudov LN; de Vries R; Ippel H; van Mierlo CP
    Biomacromolecules; 2003; 4(6):1614-22. PubMed ID: 14606887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foams Stabilized by β-Lactoglobulin Amyloid Fibrils: Effect of pH.
    Peng D; Yang J; Li J; Tang C; Li B
    J Agric Food Chem; 2017 Dec; 65(48):10658-10665. PubMed ID: 29135243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the permanent electric dipole moment of beta-lactoglobulin fibrils, using transient electric birefringence.
    Rogers SS; Venema P; van der Ploeg JP; van der Linden E; Sagis LM; Donald AM
    Biopolymers; 2006 Jun; 82(3):241-52. PubMed ID: 16489587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.