BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

983 related articles for article (PubMed ID: 25338131)

  • 1. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells.
    Ye X; Li L
    Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.
    Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF
    Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach.
    Hennrich ML; Groenewold V; Kops GJ; Heck AJ; Mohammed S
    Anal Chem; 2011 Sep; 83(18):7137-43. PubMed ID: 21815630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography.
    Loroch S; Zahedi RP; Sickmann A
    Anal Chem; 2015 Feb; 87(3):1596-604. PubMed ID: 25405705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary workflow for global phosphoproteome analysis.
    Li QR; Ning ZB; Yang XL; Wu JR; Zeng R
    Electrophoresis; 2012 Nov; 33(22):3291-8. PubMed ID: 23097065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC-MS/MS Analysis.
    Ondrej M; Rehulka P; Rehulkova H; Kupcik R; Tichy A
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32492839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).
    Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R
    J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and application of a phosphoproteomic method using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC), IMAC, and LC-MS/MS analysis to study Marek's Disease Virus infection.
    Chien KY; Liu HC; Goshe MB
    J Proteome Res; 2011 Sep; 10(9):4041-53. PubMed ID: 21736374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial use of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and strong cation exchange (SCX) chromatography for in-depth phosphoproteome analysis.
    Zarei M; Sprenger A; Gretzmeier C; Dengjel J
    J Proteome Res; 2012 Aug; 11(8):4269-76. PubMed ID: 22768876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage.
    Batth TS; Olsen JV
    Methods Mol Biol; 2016; 1355():179-92. PubMed ID: 26584926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.
    Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ
    J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High pH Reversed-Phase Micro-Columns for Simple, Sensitive, and Efficient Fractionation of Proteome and (TMT labeled) Phosphoproteome Digests.
    Ruprecht B; Zecha J; Zolg DP; Kuster B
    Methods Mol Biol; 2017; 1550():83-98. PubMed ID: 28188525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Global Phosphoproteome Profiling of Jurkat T Cells by HIFU-TiO
    Carrera M; Cañas B; Lopez-Ferrer D
    Anal Chem; 2017 Sep; 89(17):8853-8862. PubMed ID: 28787133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry.
    Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R
    J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Optimization of Automated Phosphopeptide Enrichment for High-Sensitivity Phosphoproteomics.
    Bortel P; Piga I; Koenig C; Gerner C; Martinez-Val A; Olsen JV
    Mol Cell Proteomics; 2024 May; 23(5):100754. PubMed ID: 38548019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tip-Based Fractionation of Batch-Enriched Phosphopeptides Facilitates Easy and Robust Phosphoproteome Analysis.
    Dehghani A; Gödderz M; Winter D
    J Proteome Res; 2018 Jan; 17(1):46-54. PubMed ID: 29083192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.