These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25338176)

  • 21. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties.
    Perestrelo R; Barros AS; Rocha SM; Câmara JS
    Talanta; 2011 Sep; 85(3):1483-93. PubMed ID: 21807213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS.
    Ferreira L; Perestrelo R; Caldeira M; Câmara JS
    J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of the volatile composition of Rhodobryum giganteum (Schwaegr.) Par. (Bryaceae) using solid-phase microextraction and gas chromatography/mass spectrometry (GC/MS).
    Li L; Zhao J
    Molecules; 2009 Jun; 14(6):2195-201. PubMed ID: 19553892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of volatiles from pineapple (Ananas comosus L.) pulp by comprehensive two-dimensional gas chromatography and gas chromatography/mass spectrometry.
    Pedroso MP; Ferreira EC; Hantao LW; Bogusz S; Augusto F
    J Sep Sci; 2011 Jul; 34(13):1547-54. PubMed ID: 21644251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A multifaceted investigation on the effect of vacuum on the headspace solid-phase microextraction of extra-virgin olive oil.
    Mascrez S; Psillakis E; Purcaro G
    Anal Chim Acta; 2020 Mar; 1103():106-114. PubMed ID: 32081174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of Extraction Conditions and Characterization of Volatile Organic Compounds of
    Mariano APX; Ramos ALCC; de Oliveira Júnior AH; García YM; de Paula ACCFF; Silva MR; Augusti R; de Araújo RLB; Melo JOF
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164199
    [No Abstract]   [Full Text] [Related]  

  • 27. Untargeted and Targeted Discrimination of Honey Collected by
    Wang X; Rogers KM; Li Y; Yang S; Chen L; Zhou J
    J Agric Food Chem; 2019 Oct; 67(43):12144-12152. PubMed ID: 31587558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Volatile composition changes in lemon during fruit maturation by HS-SPME-GC-MS.
    Li C; Li X; Liang G; Xiang S; Han G
    J Sci Food Agric; 2022 Jul; 102(9):3599-3606. PubMed ID: 34873698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of volatile components of cape gooseberry (Physalis peruviana L.) grown in Turkey by HS-SPME and GC-MS.
    Yilmaztekin M
    ScientificWorldJournal; 2014; 2014():796097. PubMed ID: 24741358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Quantitative determination of seven major absorbed volatile constituents in mice brain, liver and blood after intragastric administration of Asari Radix et Rhizoma suspension by headspace-solid phase microextraction-gas chromatography-mass spectrometry].
    Zhang ZW; Liu GX; Xie DM; Tian F; Jia YK; Xu F; Shang MY; Wang X; Cai SQ
    Zhongguo Zhong Yao Za Zhi; 2016 Jan; 41(2):285-293. PubMed ID: 28861975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GC/MS analysis of volatiles obtained by headspace solid-phase microextraction and simultaneous-distillation extraction from Rabdosia serra (MAXIM.) HARA leaf and stem.
    Lin L; Zhuang M; Lei F; Yang B; Zhao M
    Food Chem; 2013 Jan; 136(2):555-62. PubMed ID: 23122097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Volatile composition of Merlot red wine and its contribution to the aroma: optimization and validation of analytical method.
    Arcari SG; Caliari V; Sganzerla M; Godoy HT
    Talanta; 2017 Nov; 174():752-766. PubMed ID: 28738652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction-gas chromatography-mass spectrometry and chemometrics.
    Song X; Canellas E; Nerin C
    Food Chem; 2021 Apr; 342():128341. PubMed ID: 33077278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of a Solid-Phase Microextraction method for the Gas Chromatography-Mass Spectrometry analysis of blackberry (Rubus ulmifolius Schott) fruit volatiles.
    D'Agostino MF; Sanz J; Sanz ML; Giuffrè AM; Sicari V; Soria AC
    Food Chem; 2015 Jul; 178():10-7. PubMed ID: 25704677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of free and glycosidically bound volatile compounds in air-dried raisins from three seedless grape varieties using HS-SPME with GC-MS.
    Wang D; Cai J; Zhu BQ; Wu GF; Duan CQ; Chen G; Shi Y
    Food Chem; 2015 Jun; 177():346-53. PubMed ID: 25660896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS).
    Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F
    J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry.
    Shi J; Wu H; Xiong M; Chen Y; Chen J; Zhou B; Wang H; Li L; Fu X; Bie Z; Huang Y
    Food Chem; 2020 Jun; 316():126342. PubMed ID: 32044706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds.
    Panighel A; Flamini R
    Molecules; 2014 Dec; 19(12):21291-309. PubMed ID: 25529017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and validation of headspace Solid-Phase microextraction coupled with gas chromatography (HS-SPME-GC) method for the analysis of
    Bhavya ML; Ravi R; Madhava Naidu M
    Nat Prod Res; 2021 Apr; 35(7):1221-1225. PubMed ID: 31328550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the Volatile Profile of Core Chinese Mango Germplasm by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry.
    Ma XW; Su MQ; Wu HX; Zhou YG; Wang SB
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29921765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.