These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 25338311)
41. Anisotropic Thermoelectric Materials: Pentagonal PtM Tao WL; Zhao YQ; Zeng ZY; Chen XR; Geng HY ACS Appl Mater Interfaces; 2021 Feb; 13(7):8700-8709. PubMed ID: 33556242 [TBL] [Abstract][Full Text] [Related]
42. Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated Ti Zhang M; Zhang C; You Y; Xie H; Chi H; Sun Y; Liu W; Su X; Yan Y; Tang X; Uher C ACS Appl Mater Interfaces; 2018 Sep; 10(38):32344-32354. PubMed ID: 30160096 [TBL] [Abstract][Full Text] [Related]
43. High thermoelectric performance in metal phosphides MP Kang CJ; Jong UG; Kye YH; Yu CJ RSC Adv; 2022 Aug; 12(37):23829-23838. PubMed ID: 36093257 [TBL] [Abstract][Full Text] [Related]
44. Chemical Bonding Tuned Lattice Anharmonicity Leads to a High Thermoelectric Performance in Cubic AgSnSbTe Sarkar D; Dolui K; Taneja V; Ahad A; Dutta M; Manjunatha SO; Swain D; Biswas K Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202308515. PubMed ID: 37583094 [TBL] [Abstract][Full Text] [Related]
45. Syntheses and structural, physical, and theoretical studies of the novel isostructural Mo9 cluster compounds Ag(2.6)CsMo9Se11, Ag(4.1)ClMo9Se11, and h-Mo9Se11 with tunnel structures. Gougeon P; Potel M; Gautier R Inorg Chem; 2004 Feb; 43(4):1257-63. PubMed ID: 14966960 [TBL] [Abstract][Full Text] [Related]
46. Synergistic Effect of Chemical Substitution and Insertion on the Thermoelectric Performance of Cu Shimizu Y; Suekuni K; Saito H; Lemoine P; Guilmeau E; Raveau B; Chetty R; Ohta M; Takabatake T; Ohtaki M Inorg Chem; 2021 Aug; 60(15):11364-11373. PubMed ID: 34269565 [TBL] [Abstract][Full Text] [Related]
48. Thermoelectric Properties of As-Based Zintl Compounds Ba Kihou K; Nishiate H; Yamamoto A; Lee CH Inorg Chem; 2017 Mar; 56(6):3709-3712. PubMed ID: 28252946 [TBL] [Abstract][Full Text] [Related]
49. Crystal structure and transport properties of Ba8Ge43square3. Aydemir U; Candolfi C; Borrmann H; Baitinger M; Ormeci A; Carrillo-Cabrera W; Chubilleau C; Lenoir B; Dauscher A; Oeschler N; Steglich F; Grin Y Dalton Trans; 2010 Jan; 39(4):1078-88. PubMed ID: 20066194 [TBL] [Abstract][Full Text] [Related]
50. Ternary Compounds Cu Wang T; Xiong Y; Huang H; Qiu P; Zhao K; Yang J; Xiao J; Shi X; Chen L ACS Appl Mater Interfaces; 2020 Sep; 12(36):40486-40494. PubMed ID: 32805825 [TBL] [Abstract][Full Text] [Related]
51. Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions. Zhang Q; Cheng L; Liu W; Zheng Y; Su X; Chi H; Liu H; Yan Y; Tang X; Uher C Phys Chem Chem Phys; 2014 Nov; 16(43):23576-83. PubMed ID: 25178356 [TBL] [Abstract][Full Text] [Related]
52. Enhanced thermoelectric properties of selenium-deficient layered TiSe(2-x): a charge-density-wave material. Bhatt R; Bhattacharya S; Basu R; Ahmad S; Chauhan AK; Okram GS; Bhatt P; Roy M; Navaneethan M; Hayakawa Y; Debnath AK; Singh A; Aswal DK; Gupta SK ACS Appl Mater Interfaces; 2014 Nov; 6(21):18619-25. PubMed ID: 25318103 [TBL] [Abstract][Full Text] [Related]
53. Clathrate Ba8Au16P30: the "gold standard" for lattice thermal conductivity. Fulmer J; Lebedev OI; Roddatis VV; Kaseman DC; Sen S; Dolyniuk JA; Lee K; Olenev AV; Kovnir K J Am Chem Soc; 2013 Aug; 135(33):12313-23. PubMed ID: 23862668 [TBL] [Abstract][Full Text] [Related]
54. First-principles study of the layered thermoelectric material TiNBr. Zhang S; Xu B; Lin Y; Nan C; Liu W RSC Adv; 2019 Apr; 9(23):12886-12894. PubMed ID: 35520787 [TBL] [Abstract][Full Text] [Related]
55. Localised Ag(+) vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2. Damay F; Petit S; Rols S; Braendlein M; Daou R; Elkaïm E; Fauth F; Gascoin F; Martin C; Maignan A Sci Rep; 2016 Mar; 6():23415. PubMed ID: 27000414 [TBL] [Abstract][Full Text] [Related]
56. Quasi-one-dimensional thermal transport in trigonal selenium crystal. Peng H; Hou D; Chen G J Phys Condens Matter; 2021 Aug; 33(45):. PubMed ID: 34384051 [TBL] [Abstract][Full Text] [Related]
57. Cu Insertion Into the Mo12 Cluster Compound Cs2Mo12Se14: Synthesis, Crystal and Electronic Structures, and Physical Properties. Al Rahal Al Orabi R; Fontaine B; Gautier R; Gougeon P; Gall P; Bouyrie Y; Dauscher A; Candolfi C; Lenoir B Inorg Chem; 2016 Jul; 55(13):6616-24. PubMed ID: 27304903 [TBL] [Abstract][Full Text] [Related]
58. Electronic band structure and low-temperature transport properties of the type-I clathrate Ba8Ni(x)Ge(46-x-y□y). Aydemir U; Candolfi C; Ormeci A; Baitinger M; Burkhardt U; Oeschler N; Steglich F; Grin Y Dalton Trans; 2015 Apr; 44(16):7524-37. PubMed ID: 25805335 [TBL] [Abstract][Full Text] [Related]
59. Ultralow Lattice Thermal Conductivity at Room Temperature in Cu Koley B; Lakshan A; Raghuvanshi PR; Singh C; Bhattacharya A; Jana PP Angew Chem Int Ed Engl; 2021 Apr; 60(16):9106-9113. PubMed ID: 33146447 [TBL] [Abstract][Full Text] [Related]
60. Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722. Kieslich G; Veremchuk I; Antonyshyn I; Zeier WG; Birkel CS; Weldert K; Heinrich CP; Visnow E; Panthöfer M; Burkhardt U; Grin Y; Tremel W Phys Chem Chem Phys; 2013 Oct; 15(37):15399-403. PubMed ID: 23936907 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]