These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
530 related articles for article (PubMed ID: 25338372)
41. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Nan L; Xu D; Gu T; Song X; Yang K Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():228-34. PubMed ID: 25579918 [TBL] [Abstract][Full Text] [Related]
42. Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility. Peng C; Izawa T; Zhu L; Kuroda K; Okido M ACS Appl Mater Interfaces; 2019 Dec; 11(49):45489-45497. PubMed ID: 31714730 [TBL] [Abstract][Full Text] [Related]
43. The corrosion of 316L stainless steel induced by methanocossus mariplaudis through indirect electron transfer in seawater. Hou R; Lu S; Chen S; Dou W; Liu G Bioelectrochemistry; 2023 Feb; 149():108310. PubMed ID: 36283192 [TBL] [Abstract][Full Text] [Related]
44. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment. Zhao J; Zhai Z; Sun D; Yang C; Zhang X; Huang N; Jiang X; Yang K Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():396-410. PubMed ID: 30948076 [TBL] [Abstract][Full Text] [Related]
45. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel. Xi T; Shahzad MB; Xu D; Sun Z; Zhao J; Yang C; Qi M; Yang K Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1079-1085. PubMed ID: 27987662 [TBL] [Abstract][Full Text] [Related]
46. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels. Alvarez K; Hyun SK; Fujimoto S; Nakajima H J Mater Sci Mater Med; 2008 Nov; 19(11):3385-97. PubMed ID: 18545945 [TBL] [Abstract][Full Text] [Related]
47. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel. Li S; Li L; Qu Q; Kang Y; Zhu B; Yu D; Huang R Colloids Surf B Biointerfaces; 2019 Jan; 173():139-147. PubMed ID: 30278362 [TBL] [Abstract][Full Text] [Related]
48. Environmental scanning electron microscopy for dynamic corrosion studies of stainless steel piping used in UHP gas distribution systems. Gerristead WR; Link LF; Paciej RC; Damiani P; Li H Microsc Res Tech; 1993 Aug; 25(5-6):523-8. PubMed ID: 8400448 [TBL] [Abstract][Full Text] [Related]
49. Corrosion behavior of sensitized duplex stainless steel. Torres FJ; Panyayong W; Rogers W; Velasquez-Plata D; Oshida Y; Moore BK Biomed Mater Eng; 1998; 8(1):25-36. PubMed ID: 9713683 [TBL] [Abstract][Full Text] [Related]
50. Barnacle cement: an etchant for stainless steel 316L? Sangeetha R; Kumar R; Doble M; Venkatesan R Colloids Surf B Biointerfaces; 2010 Sep; 79(2):524-30. PubMed ID: 20641172 [TBL] [Abstract][Full Text] [Related]
51. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel. Kim KT; Lee JH; Kim YS Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773067 [TBL] [Abstract][Full Text] [Related]
52. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. Le MK; Zhu XM Biomaterials; 2001 Apr; 22(7):641-7. PubMed ID: 11246957 [TBL] [Abstract][Full Text] [Related]
53. The impact of alloying element Cu on corrosion and biofilms of 316L stainless steel exposed to seawater. Gao Y; Wu J; Zhang D; Wang P; Wang Y; Zhu L; Li C; Wang W; Zhao J; Yang C; Yang K Environ Sci Pollut Res Int; 2024 Mar; 31(12):18842-18855. PubMed ID: 38351355 [TBL] [Abstract][Full Text] [Related]
54. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants. Salahinejad E; Hadianfard MJ; Macdonald DD; Sharifi-Asl S; Mozafari M; Walker KJ; Rad AT; Madihally SV; Tayebi L PLoS One; 2013; 8(4):e61633. PubMed ID: 23630603 [TBL] [Abstract][Full Text] [Related]
55. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid. Talha M; Behera CK; Sinha OP Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():455-66. PubMed ID: 24857514 [TBL] [Abstract][Full Text] [Related]
56. The Effect of Sensitization on the Susceptibility of AISI 316L Biomaterial to Pitting Corrosion. Zatkalíková V; Uhríčik M; Markovičová L; Pastierovičová L; Kuchariková L Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630005 [TBL] [Abstract][Full Text] [Related]
57. [Effects of skeletal muscle proteins on corrosion of stainless steels]. Rojas C; Lago ME Acta Cient Venez; 2002; 53(2):156-63. PubMed ID: 12516369 [TBL] [Abstract][Full Text] [Related]
58. The control of microbially induced corrosion by methyl eugenol - A dietary phytochemical with quorum sensing inhibitory potential. Packiavathy IAS; Maruthamuthu S; Gnanaselvan G; Manoharan S; Paul JBJ; Annapoorani A; Kannappan A; Ravi AV Bioelectrochemistry; 2019 Aug; 128():186-192. PubMed ID: 31004912 [TBL] [Abstract][Full Text] [Related]
59. Aminotriazolethiol-functionalized chitosan as a macromolecule-based bioinspired corrosion inhibitor for surface protection of stainless steel in 3.5% NaCl. Chauhan DS; Mouaden KE; Quraishi MA; Bazzi L Int J Biol Macromol; 2020 Jun; 152():234-241. PubMed ID: 32109477 [TBL] [Abstract][Full Text] [Related]
60. The Influence of Intralayer Porosity and Phase Transition on Corrosion Fatigue of Additively Manufactured 316L Stainless Steel Obtained by Direct Energy Deposition Process. Bassis M; Ron T; Leon A; Kotliar A; Kotliar R; Shirizly A; Aghion E Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013615 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]