These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Omega: an overlap-graph de novo assembler for metagenomics. Haider B; Ahn TH; Bushnell B; Chai J; Copeland A; Pan C Bioinformatics; 2014 Oct; 30(19):2717-22. PubMed ID: 24947750 [TBL] [Abstract][Full Text] [Related]
6. ELOPER: elongation of paired-end reads as a pre-processing tool for improved de novo genome assembly. Silver DH; Ben-Elazar S; Bogoslavsky A; Yanai I Bioinformatics; 2013 Jun; 29(11):1455-7. PubMed ID: 23603334 [TBL] [Abstract][Full Text] [Related]
7. The MaSuRCA genome assembler. Zimin AV; Marçais G; Puiu D; Roberts M; Salzberg SL; Yorke JA Bioinformatics; 2013 Nov; 29(21):2669-77. PubMed ID: 23990416 [TBL] [Abstract][Full Text] [Related]
8. GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies. Gritsenko AA; Nijkamp JF; Reinders MJ; de Ridder D Bioinformatics; 2012 Jun; 28(11):1429-37. PubMed ID: 22492642 [TBL] [Abstract][Full Text] [Related]
9. DIYA: a bacterial annotation pipeline for any genomics lab. Stewart AC; Osborne B; Read TD Bioinformatics; 2009 Apr; 25(7):962-3. PubMed ID: 19254921 [TBL] [Abstract][Full Text] [Related]
10. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads. Al-Okaily AA BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881 [TBL] [Abstract][Full Text] [Related]
11. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. Wick RR; Judd LM; Gorrie CL; Holt KE PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827 [TBL] [Abstract][Full Text] [Related]
12. Blue: correcting sequencing errors using consensus and context. Greenfield P; Duesing K; Papanicolaou A; Bauer DC Bioinformatics; 2014 Oct; 30(19):2723-32. PubMed ID: 24919879 [TBL] [Abstract][Full Text] [Related]
13. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework. Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408 [TBL] [Abstract][Full Text] [Related]
14. RAMBO-K: Rapid and Sensitive Removal of Background Sequences from Next Generation Sequencing Data. Tausch SH; Renard BY; Nitsche A; Dabrowski PW PLoS One; 2015; 10(9):e0137896. PubMed ID: 26379285 [TBL] [Abstract][Full Text] [Related]
15. Bandage: interactive visualization of de novo genome assemblies. Wick RR; Schultz MB; Zobel J; Holt KE Bioinformatics; 2015 Oct; 31(20):3350-2. PubMed ID: 26099265 [TBL] [Abstract][Full Text] [Related]
16. ReMILO: reference assisted misassembly detection algorithm using short and long reads. Bao E; Song C; Lan L Bioinformatics; 2018 Jan; 34(1):24-32. PubMed ID: 28961789 [TBL] [Abstract][Full Text] [Related]
17. Assembling short reads from jumping libraries with large insert sizes. Vasilinetc I; Prjibelski AD; Gurevich A; Korobeynikov A; Pevzner PA Bioinformatics; 2015 Oct; 31(20):3262-8. PubMed ID: 26040456 [TBL] [Abstract][Full Text] [Related]
18. Robust high-throughput prokaryote Page AJ; De Silva N; Hunt M; Quail MA; Parkhill J; Harris SR; Otto TD; Keane JA Microb Genom; 2016 Aug; 2(8):e000083. PubMed ID: 28348874 [TBL] [Abstract][Full Text] [Related]
19. CoLoRMap: Correcting Long Reads by Mapping short reads. Haghshenas E; Hach F; Sahinalp SC; Chauve C Bioinformatics; 2016 Sep; 32(17):i545-i551. PubMed ID: 27587673 [TBL] [Abstract][Full Text] [Related]
20. scanPAV: a pipeline for extracting presence-absence variations in genome pairs. Giordano F; Stammnitz MR; Murchison EP; Ning Z Bioinformatics; 2018 Sep; 34(17):3022-3024. PubMed ID: 29608694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]