These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25338719)

  • 1. MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies.
    Jing PJ; Shen HB
    Bioinformatics; 2015 Mar; 31(5):634-41. PubMed ID: 25338719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm.
    Tuo S; Zhang J; Yuan X; Zhang Y; Liu Z
    PLoS One; 2016; 11(3):e0150669. PubMed ID: 27014873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introducing Heuristic Information Into Ant Colony Optimization Algorithm for Identifying Epistasis.
    Sun Y; Wang X; Shang J; Liu JX; Zheng CH; Lei X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1253-1261. PubMed ID: 30403637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ant colony optimization with an automatic adjustment mechanism for detecting epistatic interactions.
    Guan B; Zhao Y; Sun W
    Comput Biol Chem; 2018 Dec; 77():354-362. PubMed ID: 30466044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm.
    Chen Y; Xu F; Pian C; Xu M; Kong L; Fang J; Li Z; Zhang L
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33525573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Multitasking Ant Colony Optimization Method for Detecting Multiorder SNP Interactions.
    Tuo S; Li C; Liu F; Zhu Y; Chen T; Feng Z; Liu H; Li A
    Interdiscip Sci; 2022 Dec; 14(4):814-832. PubMed ID: 35788965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFSBN: A Method of Artificial Fish Swarm Optimizing Bayesian Network for Epistasis Detection.
    Wang L; Wang Y; Fu Y; Gao Y; Du J; Yang C; Liu J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1369-1383. PubMed ID: 31670676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GEP-EpiSeeker: a gene expression programming-based method for epistatic interaction detection in genome-wide association studies.
    Peng YZ; Lin Y; Huang Y; Li Y; Luo G; Liao J
    BMC Genomics; 2021 Dec; 22(Suppl 1):910. PubMed ID: 34930147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS.
    Niel C; Sinoquet C; Dina C; Rocheleau G
    Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Adjusting Ant Colony Optimization Based on Information Entropy for Detecting Epistatic Interactions.
    Guan B; Zhao Y
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30717303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Approach of Epistasis Detection Using Integer Linear Programming Optimizing Bayesian Network.
    Yang X; Yang C; Lei J; Liu J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2654-2671. PubMed ID: 34181547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Objective Artificial Bee Colony Algorithm Based on Scale-Free Network for Epistasis Detection.
    Gu Y; Sun Y; Shang J; Li F; Guan B; Liu JX
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies.
    Abo Alchamlat S; Farnir F
    BMC Bioinformatics; 2017 Mar; 18(1):184. PubMed ID: 28327091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks.
    Han B; Chen XW; Talebizadeh Z; Xu H
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S14. PubMed ID: 23281790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Searching Genome-Wide Multi-Locus Associations for Multiple Diseases Based on Bayesian Inference.
    Guo X; Zhang J; Cai Z; Du DZ; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):600-610. PubMed ID: 26887006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAMA: A Fast Self-Adaptive Memetic Algorithm for Detecting SNP-SNP Interactions Associated with Disease.
    Yin Y; Guan B; Zhao Y; Li Y
    Biomed Res Int; 2020; 2020():5610658. PubMed ID: 32908899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. epiACO - a method for identifying epistasis based on ant Colony optimization algorithm.
    Sun Y; Shang J; Liu JX; Li S; Zheng CH
    BioData Min; 2017; 10():23. PubMed ID: 28694848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LEAP: biomarker inference through learning and evaluating association patterns.
    Jiang X; Neapolitan RE
    Genet Epidemiol; 2015 Mar; 39(3):173-84. PubMed ID: 25677188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.