These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 25338721)

  • 1. A model for the expression of gap genes based on the Jeffreys-type equation.
    Gula IA; Samsonov AM
    Bioinformatics; 2015 Mar; 31(5):714-9. PubMed ID: 25338721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster.
    Jaeger J; Blagov M; Kosman D; Kozlov KN; Manu ; Myasnikova E; Surkova S; Vanario-Alonso CE; Samsonova M; Sharp DH; Reinitz J
    Genetics; 2004 Aug; 167(4):1721-37. PubMed ID: 15342511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring Drosophila gap gene regulatory network: a parameter sensitivity and perturbation analysis.
    Fomekong-Nanfack Y; Postma M; Kaandorp JA
    BMC Syst Biol; 2009 Sep; 3():94. PubMed ID: 19769791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local immobilization of particles in mass transfer described by a Jeffreys-type equation.
    Rukolaine SA; Samsonov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062116. PubMed ID: 24483395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation-based estimation of branching models for LTR retrotransposons.
    Moulin S; Seux N; Chrétien S; Guyeux C; Lerat E
    Bioinformatics; 2017 Feb; 33(3):320-326. PubMed ID: 28011770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of expression pattern formation due to dynamic equilibrium in gap gene system of an early Drosophila embryo.
    Myasnikova E; Spirov A
    Biosystems; 2018 Apr; 166():50-60. PubMed ID: 29428618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation.
    Kovalchuk N; Starov V; Langston P; Hilal N; Zhdanov V
    J Colloid Interface Sci; 2008 Sep; 325(2):377-85. PubMed ID: 18619605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of novel Drosophila gene, Gap69C, encoding a homolog of ADP-ribosylation factor GTPase-activating protein.
    Frolov MV; Alatortsev VE
    DNA Cell Biol; 2001 Feb; 20(2):107-13. PubMed ID: 11244568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse engineering the gap gene network of Drosophila melanogaster.
    Perkins TJ; Jaeger J; Reinitz J; Glass L
    PLoS Comput Biol; 2006 May; 2(5):e51. PubMed ID: 16710449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Ancestral Segmentation Phenotypes from Drosophila to Anopheles Using In Silico Evolution.
    Rothschild JB; Tsimiklis P; Siggia ED; François P
    PLoS Genet; 2016 May; 12(5):e1006052. PubMed ID: 27227405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved gap size estimation for scaffolding algorithms.
    Sahlin K; Street N; Lundeberg J; Arvestad L
    Bioinformatics; 2012 Sep; 28(17):2215-22. PubMed ID: 22923455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of early development in dipterans: reverse-engineering the gap gene network in the moth midge Clogmia albipunctata (Psychodidae).
    Crombach A; García-Solache MA; Jaeger J
    Biosystems; 2014 Sep; 123():74-85. PubMed ID: 24911671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional control in the segmentation gene network of Drosophila.
    Schroeder MD; Pearce M; Fak J; Fan H; Unnerstall U; Emberly E; Rajewsky N; Siggia ED; Gaul U
    PLoS Biol; 2004 Sep; 2(9):E271. PubMed ID: 15340490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The gap gene system of Drosophila melanogaster: model-fitting and validation.
    Perkins TJ
    Ann N Y Acad Sci; 2007 Dec; 1115():116-31. PubMed ID: 17934052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes.
    Jiang SY; Ramachandran S
    Physiol Genomics; 2006 Feb; 24(3):235-51. PubMed ID: 16332933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo characterization of the Rab11-GAP activity of Drosophila Evi5.
    Laflamme C; Emery G
    Methods Mol Biol; 2015; 1298():187-94. PubMed ID: 25800843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in Drosophila.
    Rodrigues FF; Shao W; Harris TJ
    Mol Biol Cell; 2016 Oct; 27(20):3143-3155. PubMed ID: 27535433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shadow Enhancers Mediate Dynamic Shifts of Gap Gene Expression in the Drosophila Embryo.
    El-Sherif E; Levine M
    Curr Biol; 2016 May; 26(9):1164-9. PubMed ID: 27112292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FlyNet: a versatile network prioritization server for the Drosophila community.
    Shin J; Yang S; Kim E; Kim CY; Shim H; Cho A; Kim H; Hwang S; Shim JE; Lee I
    Nucleic Acids Res; 2015 Jul; 43(W1):W91-7. PubMed ID: 25943544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.
    Hodar C; Zuñiga A; Pulgar R; Travisany D; Chacon C; Pino M; Maass A; Cambiazo V
    Gene; 2014 Feb; 535(2):210-7. PubMed ID: 24321690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.