These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 25338742)
1. Early engineering approaches to improve peptide developability and manufacturability. Furman JL; Chiu M; Hunter MJ AAPS J; 2015 Jan; 17(1):111-20. PubMed ID: 25338742 [TBL] [Abstract][Full Text] [Related]
2. Predicting Antibody Developability Profiles Through Early Stage Discovery Screening. Bailly M; Mieczkowski C; Juan V; Metwally E; Tomazela D; Baker J; Uchida M; Kofman E; Raoufi F; Motlagh S; Yu Y; Park J; Raghava S; Welsh J; Rauscher M; Raghunathan G; Hsieh M; Chen YL; Nguyen HT; Nguyen N; Cipriano D; Fayadat-Dilman L MAbs; 2020; 12(1):1743053. PubMed ID: 32249670 [TBL] [Abstract][Full Text] [Related]
3. Susceptibility of Antibody CDR Residues to Chemical Modifications Can Be Revealed Prior to Antibody Humanization and Aid in the Lead Selection Process. Xu A; Kim HS; Estee S; ViaJar S; Galush WJ; Gill A; Hötzel I; Lazar GA; McDonald P; Andersen N; Spiess C Mol Pharm; 2018 Oct; 15(10):4529-4537. PubMed ID: 30118239 [TBL] [Abstract][Full Text] [Related]
4. Pragmatic mAb lead molecule engineering from a developability perspective. Chi B; De Oliveira G; Gallagher T; Mitchell L; Knightley L; Gonzalez CC; Russell S; Germaschewski V; Pearce C; Sellick CA Biotechnol Bioeng; 2021 Oct; 118(10):3733-3743. PubMed ID: 33913507 [TBL] [Abstract][Full Text] [Related]
5. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. Lu X; Nobrega RP; Lynaugh H; Jain T; Barlow K; Boland T; Sivasubramanian A; Vásquez M; Xu Y MAbs; 2019 Jan; 11(1):45-57. PubMed ID: 30526254 [TBL] [Abstract][Full Text] [Related]
6. Unique Impacts of Methionine Oxidation, Tryptophan Oxidation, and Asparagine Deamidation on Antibody Stability and Aggregation. Alam ME; Slaney TR; Wu L; Das TK; Kar S; Barnett GV; Leone A; Tessier PM J Pharm Sci; 2020 Jan; 109(1):656-669. PubMed ID: 31678251 [TBL] [Abstract][Full Text] [Related]
8. In silico prediction of post-translational modifications in therapeutic antibodies. Vatsa S MAbs; 2022; 14(1):2023938. PubMed ID: 35040751 [TBL] [Abstract][Full Text] [Related]
9. Developability studies before initiation of process development: improving manufacturability of monoclonal antibodies. Yang X; Xu W; Dukleska S; Benchaar S; Mengisen S; Antochshuk V; Cheung J; Mann L; Babadjanova Z; Rowand J; Gunawan R; McCampbell A; Beaumont M; Meininger D; Richardson D; Ambrogelly A MAbs; 2013; 5(5):787-94. PubMed ID: 23883920 [TBL] [Abstract][Full Text] [Related]
10. Peptide Developability at the Discovery-to-Development Interface--Current State and Future Opportunities. Bak A; Dai W AAPS J; 2015 Jul; 17(4):777-9. PubMed ID: 25823670 [No Abstract] [Full Text] [Related]
11. Assessing developability early in the discovery process for novel biologics. Fernández-Quintero ML; Ljungars A; Waibl F; Greiff V; Andersen JT; Gjølberg TT; Jenkins TP; Voldborg BG; Grav LM; Kumar S; Georges G; Kettenberger H; Liedl KR; Tessier PM; McCafferty J; Laustsen AH MAbs; 2023; 15(1):2171248. PubMed ID: 36823021 [TBL] [Abstract][Full Text] [Related]
12. Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. Khetan R; Curtis R; Deane CM; Hadsund JT; Kar U; Krawczyk K; Kuroda D; Robinson SA; Sormanni P; Tsumoto K; Warwicker J; Martin ACR MAbs; 2022; 14(1):2020082. PubMed ID: 35104168 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of protein engineering and process optimization approaches to enhance antibody drug manufacturability. Conley GP; Viswanathan M; Hou Y; Rank DL; Lindberg AP; Cramer SM; Ladner RC; Nixon AE; Chen J Biotechnol Bioeng; 2011 Nov; 108(11):2634-44. PubMed ID: 21618474 [TBL] [Abstract][Full Text] [Related]
15. Predicting deamidation and isomerization sites in therapeutic antibodies using structure-based Hoffmann D; Bauer J; Kossner M; Henry A; Karow-Zwick AR; Licari G MAbs; 2024; 16(1):2333436. PubMed ID: 38546837 [TBL] [Abstract][Full Text] [Related]
16. Therapeutic peptides: technological advances driving peptides into development. Sato AK; Viswanathan M; Kent RB; Wood CR Curr Opin Biotechnol; 2006 Dec; 17(6):638-42. PubMed ID: 17049837 [TBL] [Abstract][Full Text] [Related]
17. Developability assessment during the selection of novel therapeutic antibodies. Jarasch A; Koll H; Regula JT; Bader M; Papadimitriou A; Kettenberger H J Pharm Sci; 2015 Jun; 104(6):1885-1898. PubMed ID: 25821140 [TBL] [Abstract][Full Text] [Related]
18. Blueprint for antibody biologics developability. Mieczkowski C; Zhang X; Lee D; Nguyen K; Lv W; Wang Y; Zhang Y; Way J; Gries JM MAbs; 2023; 15(1):2185924. PubMed ID: 36880643 [TBL] [Abstract][Full Text] [Related]
19. Prediction and Reduction of the Aggregation of Monoclonal Antibodies. van der Kant R; Karow-Zwick AR; Van Durme J; Blech M; Gallardo R; Seeliger D; Aßfalg K; Baatsen P; Compernolle G; Gils A; Studts JM; Schulz P; Garidel P; Schymkowitz J; Rousseau F J Mol Biol; 2017 Apr; 429(8):1244-1261. PubMed ID: 28322916 [TBL] [Abstract][Full Text] [Related]
20. Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Grassi L; Cabrele C Amino Acids; 2019 Nov; 51(10-12):1409-1431. PubMed ID: 31576455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]