These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25339242)

  • 1. Theory of strain tuning fine structure splitting in self-assembled InAs/GaAs quantum dots.
    Wang J; Guo GC; He L
    J Phys Condens Matter; 2014 Nov; 26(47):475301. PubMed ID: 25339242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress.
    Gong M; Zhang W; Guo GC; He L
    Phys Rev Lett; 2011 Jun; 106(22):227401. PubMed ID: 21702632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures.
    Fillipov S; Puttisong Y; Huang Y; Buyanova IA; Suraprapapich S; Tu CW; Chen WM
    ACS Nano; 2015 Jun; 9(6):5741-9. PubMed ID: 25965972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependent empirical pseudopotential theory for self-assembled quantum dots.
    Wang J; Gong M; Guo GC; He L
    J Phys Condens Matter; 2012 Nov; 24(47):475302. PubMed ID: 23103408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots.
    Seguin R; Schliwa A; Rodt S; Pötschke K; Pohl UW; Bimberg D
    Phys Rev Lett; 2005 Dec; 95(25):257402. PubMed ID: 16384505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Scalable Entangled Photon Sources with Self-Assembled InAs/GaAs Quantum Dots.
    Wang J; Gong M; Guo GC; He L
    Phys Rev Lett; 2015 Aug; 115(6):067401. PubMed ID: 26296130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman coherence beats from entangled polarization eigenstates in InAs quantum dots.
    Lenihan AS; Gurudev Dutt MV; Steel DG; Ghosh S; Bhattacharya PK
    Phys Rev Lett; 2002 Jun; 88(22):223601. PubMed ID: 12059418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55-microm photon emitter.
    He L; Gong M; Li CF; Guo GC; Zunger A
    Phys Rev Lett; 2008 Oct; 101(15):157405. PubMed ID: 18999641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical control of the exciton fine structure of a quantum dot molecule.
    Sköld N; Boyer de la Giroday A; Bennett AJ; Farrer I; Ritchie DA; Shields AJ
    Phys Rev Lett; 2013 Jan; 110(1):016804. PubMed ID: 23383823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower bound for the excitonic fine structure splitting in self-assembled quantum dots.
    Singh R; Bester G
    Phys Rev Lett; 2010 May; 104(19):196803. PubMed ID: 20866988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-wave mixing dynamics of excitons in InGaAs self-assembled quantum dots.
    Borri P; Langbein W
    J Phys Condens Matter; 2007 Jul; 19(29):295201. PubMed ID: 21483053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots.
    Fry PW; Itskevich IE; Mowbray DJ; Skolnick MS; Finley JJ; Barker JA; O'Reilly EP; Wilson LR; Larkin IA; Maksym PA; Hopkinson M; Al-Khafaji M; David JP; Cullis AG; Hill G; Clark JC
    Phys Rev Lett; 2000 Jan; 84(4):733-6. PubMed ID: 11017359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of an excitonic ground state in InAs/InSb quantum dots.
    He L; Bester G; Zunger A
    Phys Rev Lett; 2005 Jan; 94(1):016801. PubMed ID: 15698111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical control of the exciton-biexciton splitting in self-assembled InGaAs quantum dots.
    Kaniber M; Huck MF; Müller K; Clark EC; Troiani F; Bichler M; Krenner HJ; Finley JJ
    Nanotechnology; 2011 Aug; 22(32):325202. PubMed ID: 21772067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots.
    Duque CA; Porras-Montenegro N; Barticevic Z; Pacheco M; Oliveira LE
    J Phys Condens Matter; 2006 Feb; 18(6):1877-84. PubMed ID: 21697562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous quantum-confined Stark effects in stacked InAs/GaAs self-assembled quantum dots.
    Sheng W; Leburton JP
    Phys Rev Lett; 2002 Apr; 88(16):167401. PubMed ID: 11955264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GaAs Cone-Shell Quantum Dots in a Lateral Electric Field: Exciton Stark-Shift, Lifetime, and Fine-Structure Splitting.
    Alshaikh A; Blick RH; Heyn C
    Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology control of exciton fine structure in polar and nonpolar zinc sulfide nanorods.
    Baskoutas S; Zeng Z; Garoufalis CS; Bester G
    Sci Rep; 2017 Aug; 7(1):9366. PubMed ID: 28839220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning of polarization sensitivity in closely stacked trilayer InAs/GaAs quantum dots induced by overgrowth dynamics.
    Tasco V; Usman M; De Giorgi M; Passaseo A
    Nanotechnology; 2014 Feb; 25(5):055207. PubMed ID: 24407042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.