These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25339284)

  • 21. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(8):1624-52. PubMed ID: 25350312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical Properties of Single- and Double-Functionalized Small Diamondoids.
    Sarap CS; Adhikari B; Meng S; Uhlig F; Fyta M
    J Phys Chem A; 2018 Apr; 122(14):3583-3593. PubMed ID: 29488764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A computational proposal for the experimentally observed discriminatory behavior of hypoxanthine, a weak universal nucleobase.
    Rutledge LR; Wetmore SD
    Phys Chem Chem Phys; 2012 Feb; 14(8):2743-53. PubMed ID: 22270716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and RNA-Binding Properties of Extended Nucleobases for Triplex-Forming Peptide Nucleic Acids.
    Kumpina I; Brodyagin N; MacKay JA; Kennedy SD; Katkevics M; Rozners E
    J Org Chem; 2019 Nov; 84(21):13276-13298. PubMed ID: 31538780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The chemical nature of the 2'-substituent in the pentose-sugar dictates the pseudoaromatic character of the nucleobase (pKa) in DNA/RNA.
    Chatterjee S; Pathmasiri W; Plashkevych O; Honcharenko D; Varghese OP; Maiti M; Chattopadhyaya J
    Org Biomol Chem; 2006 May; 4(9):1675-86. PubMed ID: 16633560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of amino-diamondoid pharmacophores via photocatalytic C-H aminoalkylation.
    Weigel WK; Dang HT; Yang HB; Martin DBC
    Chem Commun (Camb); 2020 Aug; 56(67):9699-9702. PubMed ID: 32699866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: A DFT, NBO, AIM and NCI analysis.
    Venkataramanan NS; Suvitha A; Kawazoe Y
    J Mol Graph Model; 2017 Nov; 78():48-60. PubMed ID: 29017077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical and experimental studies of the interactions between Au2(-) and nucleobases.
    Cao GJ; Xu HG; Zheng WJ; Li J
    Phys Chem Chem Phys; 2014 Feb; 16(7):2928-35. PubMed ID: 24425040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cation-pi and amino-acceptor interactions between hydrated metal cations and DNA bases. A quantum-chemical view.
    Sponer J; Sponer JE; Leszczynski J
    J Biomol Struct Dyn; 2000 Jun; 17(6):1087-96. PubMed ID: 10949174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insights into the ultraviolet spectrum of liquid water from model calculations: the different roles of donor and acceptor hydrogen bonds in water pentamers.
    Cabral do Couto P; Chipman DM
    J Chem Phys; 2012 Nov; 137(18):184301. PubMed ID: 23163365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational characterization of the hydrogen-bonding and stacking interactions of hypoxanthine.
    Rutledge LR; Wheaton CA; Wetmore SD
    Phys Chem Chem Phys; 2007 Jan; 9(4):497-509. PubMed ID: 17216066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox-controlled hydrogen bonding: turning a superbase into a strong hydrogen-bond donor.
    Wild U; Neuhäuser C; Wiesner S; Kaifer E; Wadepohl H; Himmel HJ
    Chemistry; 2014 May; 20(20):5914-25. PubMed ID: 24757064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrids made of defective nanodiamonds interacting with DNA nucleobases.
    Liu D; Fyta M
    Nanotechnology; 2019 Feb; 30(6):065601. PubMed ID: 30524020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleobase pairing in expanded Watson-Crick-like genetic information systems.
    Geyer CR; Battersby TR; Benner SA
    Structure; 2003 Dec; 11(12):1485-98. PubMed ID: 14656433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rationalizing the structural variability of the exocyclic amino groups in nucleobases and their metal complexes: cytosine and adenine.
    Fonseca Guerra C; Sanz Miguel PJ; Cebollada A; Bickelhaupt FM; Lippert B
    Chemistry; 2014 Jul; 20(31):9494-9. PubMed ID: 25043576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lectin-carbohydrate interactions. Studies of the nature of hydrogen bonding between D-galactose and certain D-galactose-specific lectins, and between D-mannose and concanavalin A.
    Bhattacharyya L; Brewer CF
    Eur J Biochem; 1988 Sep; 176(1):207-12. PubMed ID: 3416869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ordered phases of encapsulated diamondoids into carbon nanotubes.
    Legoas SB; dos Santos RP; Troche KS; Coluci VR; Galvão DS
    Nanotechnology; 2011 Aug; 22(31):315708. PubMed ID: 21737869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases.
    Sponer J; Leszczynski J; Hobza P
    Biopolymers; 2001-2002; 61(1):3-31. PubMed ID: 11891626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Urea Mimics Nucleobases by Preserving the Helical Integrity of B-DNA Duplexes via Hydrogen Bonding and Stacking Interactions.
    Suresh G; Padhi S; Patil I; Priyakumar UD
    Biochemistry; 2016 Oct; 55(40):5653-5664. PubMed ID: 27657980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly.
    Yan H; Hohman JN; Li FH; Jia C; Solis-Ibarra D; Wu B; Dahl JE; Carlson RM; Tkachenko BA; Fokin AA; Schreiner PR; Vailionis A; Kim TR; Devereaux TP; Shen ZX; Melosh NA
    Nat Mater; 2017 Mar; 16(3):349-355. PubMed ID: 28024157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.