These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25339285)

  • 1. Ag(x)@WO₃ core-shell nanostructure for LSP enhanced chemical sensors.
    Xu L; Yin ML; Liu SF
    Sci Rep; 2014 Oct; 4():6745. PubMed ID: 25339285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors.
    Yao Y; Ji F; Yin M; Ren X; Ma Q; Yan J; Liu SF
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18165-72. PubMed ID: 27348055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the field distribution and fabrication of an Al@ZnO core-shell nanostructure for a SPR-based fiber optic phenyl hydrazine sensor.
    Tabassum R; Kaur P; Gupta BD
    Nanotechnology; 2016 May; 27(21):215501. PubMed ID: 27079452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P
    Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximizing the photo catalytic and photo response properties of multimodal plasmonic Ag/WO(3-x) heterostructure nanorods by variation of the Ag size.
    Ghosh S; Saha M; Paul S; De SK
    Nanoscale; 2015 Nov; 7(43):18284-98. PubMed ID: 26486253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Enhanced Raman and Photoluminescence of Bio-Hybrid Ag/Polymer Nanoparticles by Localized Surface Plasmon for Highly Sensitive DNA Sensors.
    Kim S; Kim BH; Hong YK; Cui C; Choi J; Park DH; Song SH
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32164297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@Cu₂O core-shell heteronanowires.
    Xiong J; Li Z; Chen J; Zhang S; Wang L; Dou S
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15716-25. PubMed ID: 25148582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon Enhanced Fluorescence and Raman Scattering by [Au-Ag Alloy NP Cluster]@SiO
    Zhang C; Zhang T; Zhang Z; Zheng H
    Front Chem; 2019; 7():647. PubMed ID: 31616656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic core-shell nanostructure as an optical photoactive nanolens for enhanced light harvesting and hydrogen production.
    Gesesse GD; Le Neel T; Cui Z; Bachelier G; Remita H; Colbeau-Justin C; Ghazzal MN
    Nanoscale; 2018 Nov; 10(43):20140-20146. PubMed ID: 30379178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise preparation of WO
    Yuan KP; Zhu LY; Yang JH; Hang CZ; Tao JJ; Ma HP; Jiang AQ; Zhang DW; Lu HL
    J Colloid Interface Sci; 2020 May; 568():81-88. PubMed ID: 32088454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide.
    Awazu K; Fujimaki M; Rockstuhl C; Tominaga J; Murakami H; Ohki Y; Yoshida N; Watanabe T
    J Am Chem Soc; 2008 Feb; 130(5):1676-80. PubMed ID: 18189392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core-shell nanoparticles.
    Zhang X; Zhu Y; Yang X; Wang S; Shen J; Lin B; Li C
    Nanoscale; 2013 Apr; 5(8):3359-66. PubMed ID: 23467326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling.
    Shen J; Zhu Y; Yang X; Zong J; Li C
    Langmuir; 2013 Jan; 29(2):690-5. PubMed ID: 23206276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au-Ag core-shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties.
    Cha SK; Mun JH; Chang T; Kim SY; Kim JY; Jin HM; Lee JY; Shin J; Kim KH; Kim SO
    ACS Nano; 2015 May; 9(5):5536-43. PubMed ID: 25893844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis.
    Xi G; Yue B; Cao J; Ye J
    Chemistry; 2011 Apr; 17(18):5145-54. PubMed ID: 21432916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy.
    Yang J; Shen D; Zhou L; Li W; Fan J; El-Toni AM; Zhang WX; Zhang F; Zhao D
    Adv Healthc Mater; 2014 Oct; 3(10):1620-8. PubMed ID: 24665061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene vs. silica coated refractory nitrides based core-shell nanoparticles for nanoplasmonic sensing.
    Singh A; Shishodia MS
    Physica E Low Dimens Syst Nanostruct; 2020 Oct; 124():114288. PubMed ID: 32834765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer Charge and Energy of Ag@CdSe QDs-rGO Core-Shell Plasmonic Photocatalyst for Enhanced Visible Light Photocatalytic Activity.
    Zhou M; Li J; Ye Z; Ma C; Wang H; Huo P; Shi W; Yan Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28231-43. PubMed ID: 26669327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sintering temperature on sensing properties of WO
    Lu R; Zhong X; Shang S; Wang S; Tang M
    R Soc Open Sci; 2018 Oct; 5(10):171691. PubMed ID: 30473796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.