These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 25339600)
21. Nanoporous carbon spheres derived from metal-phenolic coordination polymers for supercapacitor and biosensor. Wang G; Qin J; Zhao Y; Wei J J Colloid Interface Sci; 2019 May; 544():241-248. PubMed ID: 30851685 [TBL] [Abstract][Full Text] [Related]
22. Preparation of spherical porous carbon from lignin-derived phenolic resin and its application in supercapacitor electrodes. Li P; Yang C; Yi D; Li S; Wang M; Wang H; Jin Y; Wu W Int J Biol Macromol; 2023 Dec; 252():126271. PubMed ID: 37572820 [TBL] [Abstract][Full Text] [Related]
23. Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. Zhang W; Yin J; Wang C; Zhao L; Jian W; Lu K; Lin H; Qiu X; Alshareef HN Small Methods; 2021 Nov; 5(11):e2100896. PubMed ID: 34927974 [TBL] [Abstract][Full Text] [Related]
24. Heteroatom-doped porous carbon microspheres derived from ionic liquid-lignin solution for high performance supercapacitors. Liu C; Hou Y; Li Y; Xiao H J Colloid Interface Sci; 2022 May; 614():566-573. PubMed ID: 35121515 [TBL] [Abstract][Full Text] [Related]
25. Lignin--from natural adsorbent to activated carbon: a review. Suhas ; Carrott PJ; Ribeiro Carrott MM Bioresour Technol; 2007 Sep; 98(12):2301-12. PubMed ID: 17055259 [TBL] [Abstract][Full Text] [Related]
26. Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors. Cao Q; Zhu M; Chen J; Song Y; Li Y; Zhou J ACS Appl Mater Interfaces; 2020 Jan; 12(1):1210-1221. PubMed ID: 31845573 [TBL] [Abstract][Full Text] [Related]
27. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Shu Y; Bai Q; Fu G; Xiong Q; Li C; Ding H; Shen Y; Uyama H Carbohydr Polym; 2020 Jan; 227():115346. PubMed ID: 31590873 [TBL] [Abstract][Full Text] [Related]
28. Novel metal-lignin assembly strategy for one-pot fabrication of lignin-derived heteroatom-doped hierarchically porous carbon and its application in high-performance supercapacitor. Li W; Wang G; Sui W; Xu Y; Parvez AM; Si C Int J Biol Macromol; 2023 Apr; 234():123603. PubMed ID: 36775225 [TBL] [Abstract][Full Text] [Related]
29. Solvent-Free Mechanochemical Synthesis of Nitrogen-Doped Nanoporous Carbon for Electrochemical Energy Storage. Schneidermann C; Jäckel N; Oswald S; Giebeler L; Presser V; Borchardt L ChemSusChem; 2017 Jun; 10(11):2416-2424. PubMed ID: 28436604 [TBL] [Abstract][Full Text] [Related]
30. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. Salunkhe RR; Kaneti YV; Kim J; Kim JH; Yamauchi Y Acc Chem Res; 2016 Dec; 49(12):2796-2806. PubMed ID: 27993000 [TBL] [Abstract][Full Text] [Related]
31. Changes in surface chemistry of carbon materials upon electrochemical measurements and their effects on capacitance in acidic and neutral electrolytes. Hulicova-Jurcakova D; Fiset E; Lu GQ; Bandosz TJ ChemSusChem; 2012 Nov; 5(11):2188-99. PubMed ID: 23086734 [TBL] [Abstract][Full Text] [Related]
32. A Sustainable Approach for Preparing Porous Carbon Spheres Derived from Kraft Lignin and Sodium Hydroxide as Highly Packed Thin Film Electrode Materials. Kitamoto Y; Cao KLA; Le PH; Abdillah OB; Iskandar F; Ogi T Langmuir; 2022 Mar; 38(11):3540-3552. PubMed ID: 35258982 [TBL] [Abstract][Full Text] [Related]
33. Sustainable supercapacitors of nitrogen-doping porous carbon based on cellulose nanocrystals and urea. Wang S; Dong L; Li Z; Lin N; Xu H; Gao S Int J Biol Macromol; 2020 Dec; 164():4095-4103. PubMed ID: 32896560 [TBL] [Abstract][Full Text] [Related]
34. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Cagnon B; Py X; Guillot A; Stoeckli F; Chambat G Bioresour Technol; 2009 Jan; 100(1):292-8. PubMed ID: 18650083 [TBL] [Abstract][Full Text] [Related]
35. High-performance electrode materials of heteroatom-doped lignin-based carbon materials for supercapacitor applications. Zhang C; Chen N; Zhao M; Zhong W; Wu WJ; Jin YC Int J Biol Macromol; 2024 Jul; 273(Pt 1):133017. PubMed ID: 38876242 [TBL] [Abstract][Full Text] [Related]
36. One-pot synthesis of unique skin-tissue-bone structured porous carbons for enhanced supercapacitor performance. Yan D; Guo DC; Lu AH; Dong XL; Li WC J Colloid Interface Sci; 2019 Dec; 557():519-527. PubMed ID: 31546117 [TBL] [Abstract][Full Text] [Related]
37. Preparation and application of porous nitrogen-doped graphene obtained by co-pyrolysis of lignosulfonate and graphene oxide. Zhao HB; Wang WD; Lü QF; Lin TT; Lin Q; Yang H Bioresour Technol; 2015 Jan; 176():106-11. PubMed ID: 25460990 [TBL] [Abstract][Full Text] [Related]
38. Porous carboxymethyl cellulose carbon of lignocellulosic based materials incorporated manganese oxide for supercapacitor application. Ali MSM; Zainal Z; Hussein MZ; Wahid MH; Bahrudin NN; Muzakir MM; Jalil R Int J Biol Macromol; 2021 Jun; 180():654-666. PubMed ID: 33722623 [TBL] [Abstract][Full Text] [Related]
39. Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Xie X; Goodell B; Zhang D; Nagle DC; Qian Y; Peterson ML; Jellison J Bioresour Technol; 2009 Mar; 100(5):1797-802. PubMed ID: 19027291 [TBL] [Abstract][Full Text] [Related]
40. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance. Song M; Zhou Y; Ren X; Wan J; Du Y; Wu G; Ma F J Colloid Interface Sci; 2019 Feb; 535():276-286. PubMed ID: 30316114 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]