These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25339732)

  • 1. Gravity influences the visual representation of object tilt in parietal cortex.
    Rosenberg A; Angelaki DE
    J Neurosci; 2014 Oct; 34(43):14170-80. PubMed ID: 25339732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The visual representation of 3D object orientation in parietal cortex.
    Rosenberg A; Cowan NJ; Angelaki DE
    J Neurosci; 2013 Dec; 33(49):19352-61. PubMed ID: 24305830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceived self-orientation in allocentric and egocentric space: effects of visual and physical tilt on saccadic and tactile measures.
    Barnett-Cowan M; Harris LR
    Brain Res; 2008 Nov; 1242():231-43. PubMed ID: 18706895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common and specific neural correlates underlying the spatial congruency effect induced by the egocentric and allocentric reference frame.
    Liu N; Li H; Su W; Chen Q
    Hum Brain Mapp; 2017 Apr; 38(4):2112-2127. PubMed ID: 28054740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible egocentric and allocentric representations of heading signals in parietal cortex.
    Chen X; DeAngelis GC; Angelaki DE
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):E3305-E3312. PubMed ID: 29555744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Choice-Related Activity during Visual Slant Discrimination in Macaque CIP But Not V3A.
    Elmore LC; Rosenberg A; DeAngelis GC; Angelaki DE
    eNeuro; 2019; 6(2):. PubMed ID: 30923736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural ensemble decoding reveals a correlate of viewer- to object-centered spatial transformation in monkey parietal cortex.
    Crowe DA; Averbeck BB; Chafee MV
    J Neurosci; 2008 May; 28(20):5218-28. PubMed ID: 18480278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible coding of object motion in multiple reference frames by parietal cortex neurons.
    Sasaki R; Anzai A; Angelaki DE; DeAngelis GC
    Nat Neurosci; 2020 Aug; 23(8):1004-1015. PubMed ID: 32541964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Updating of visual orientation in a gravity-based reference frame.
    Niehof N; Tramper JJ; Doeller CF; Medendorp WP
    J Vis; 2017 Oct; 17(12):4. PubMed ID: 28983570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation.
    Rolls ET
    Hippocampus; 2020 Apr; 30(4):332-353. PubMed ID: 31697002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus.
    Mullette-Gillman OA; Cohen YE; Groh JM
    J Neurophysiol; 2005 Oct; 94(4):2331-52. PubMed ID: 15843485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex.
    Vaziri S; Connor CE
    Curr Biol; 2016 Mar; 26(6):766-74. PubMed ID: 26923785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gravity orientation tuning in macaque anterior thalamus.
    Laurens J; Kim B; Dickman JD; Angelaki DE
    Nat Neurosci; 2016 Dec; 19(12):1566-1568. PubMed ID: 27775722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial invariance of visual receptive fields in parietal cortex neurons.
    Duhamel JR; Bremmer F; Ben Hamed S; Graf W
    Nature; 1997 Oct; 389(6653):845-8. PubMed ID: 9349815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disentangling gravitational, environmental, and egocentric reference frames in spatial neglect.
    Karnath HO; Fetter M; Niemeier M
    J Cogn Neurosci; 1998 Nov; 10(6):680-90. PubMed ID: 9831737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between ego- and allocentric neuronal representations of space.
    Neggers SF; Van der Lubbe RH; Ramsey NF; Postma A
    Neuroimage; 2006 May; 31(1):320-31. PubMed ID: 16473025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eye-centered representation of optic flow tuning in the ventral intraparietal area.
    Chen X; DeAngelis GC; Angelaki DE
    J Neurosci; 2013 Nov; 33(47):18574-82. PubMed ID: 24259579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural coding of action in three dimensions: Task- and time-invariant reference frames for visuospatial and motor-related activity in parietal area V6A.
    Hadjidimitrakis K; Ghodrati M; Breveglieri R; Rosa MGP; Fattori P
    J Comp Neurol; 2020 Dec; 528(17):3108-3122. PubMed ID: 32080849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central processes amplify and transform anisotropies of the visual system in a test of visual-haptic coordination.
    McIntyre J; Lipshits M
    J Neurosci; 2008 Jan; 28(5):1246-61. PubMed ID: 18234902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural basis of the egocentric and allocentric spatial frame of reference.
    Zaehle T; Jordan K; Wüstenberg T; Baudewig J; Dechent P; Mast FW
    Brain Res; 2007 Mar; 1137(1):92-103. PubMed ID: 17258693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.