BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25339874)

  • 1. Avoidance as expectancy in rats: sex and strain differences in acquisition.
    Avcu P; Jiao X; Myers CE; Beck KD; Pang KC; Servatius RJ
    Front Behav Neurosci; 2014; 8():334. PubMed ID: 25339874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avoidance expression in rats as a function of signal-shock interval: strain and sex differences.
    Servatius RJ; Avcu P; Ko N; Jiao X; Beck KD; Minor TR; Pang KC
    Front Behav Neurosci; 2015; 9():168. PubMed ID: 26217200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial Predictability in Avoidance Acquisition and Expression of Wistar-Kyoto and Sprague-Dawley Rats: Implications for Anxiety Vulnerability in Uncertain Situations.
    Miller DP; Allen MT; Servatius RJ
    Front Psychiatry; 2020; 11():848. PubMed ID: 32973587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vulnerability factors in anxiety: Strain and sex differences in the use of signals associated with non-threat during the acquisition and extinction of active-avoidance behavior.
    Beck KD; Jiao X; Ricart TM; Myers CE; Minor TR; Pang KC; Servatius RJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Aug; 35(7):1659-70. PubMed ID: 21601608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avoidance perseveration during extinction training in Wistar-Kyoto rats: an interaction of innate vulnerability and stressor intensity.
    Jiao X; Pang KC; Beck KD; Minor TR; Servatius RJ
    Behav Brain Res; 2011 Aug; 221(1):98-107. PubMed ID: 21376086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vulnerability factors in anxiety determined through differences in active-avoidance behavior.
    Beck KD; Jiao X; Pang KC; Servatius RJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2010 Aug; 34(6):852-60. PubMed ID: 20382195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paired-housing selectively facilitates within-session extinction of avoidance behavior, and increases c-Fos expression in the medial prefrontal cortex, in anxiety vulnerable Wistar-Kyoto rats.
    Smith IM; Pang KC; Servatius RJ; Jiao X; Beck KD
    Physiol Behav; 2016 Oct; 164(Pt A):198-206. PubMed ID: 27235339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid avoidance acquisition in Wistar-Kyoto rats.
    Servatius RJ; Jiao X; Beck KD; Pang KC; Minor TR
    Behav Brain Res; 2008 Oct; 192(2):191-7. PubMed ID: 18501974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical and instrumental conditioning of eyeblink responses in Wistar-Kyoto and Sprague-Dawley rats.
    Ricart TM; Jiao X; Pang KC; Beck KD; Servatius RJ
    Behav Brain Res; 2011 Jan; 216(1):414-8. PubMed ID: 20801161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of psychotropic agents on extinction of lever-press avoidance in a rat model of anxiety vulnerability.
    Jiao X; Beck KD; Stewart AL; Smith IM; Myers CE; Servatius RJ; Pang KC
    Front Behav Neurosci; 2014; 8():322. PubMed ID: 25309372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of "Warm-Up" during Active Avoidance Learning in a Rat Model of Anxiety Vulnerability: Insights from Computational Modeling.
    Myers CE; Smith IM; Servatius RJ; Beck KD
    Front Behav Neurosci; 2014; 8():283. PubMed ID: 25183956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ketamine facilitates extinction of avoidance behavior and enhances synaptic plasticity in a rat model of anxiety vulnerability: Implications for the pathophysiology and treatment of anxiety disorders.
    Fortress AM; Smith IM; Pang KCH
    Neuropharmacology; 2018 Jul; 137():372-381. PubMed ID: 29750979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reinforcement-learning model of active avoidance behavior: Differences between Sprague Dawley and Wistar-Kyoto rats.
    Spiegler KM; Palmieri J; Pang KCH; Myers CE
    Behav Brain Res; 2020 Sep; 393():112784. PubMed ID: 32585299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of extracellular signal-regulated kinase (ERK) and ΔFosB in emotion-associated neural circuitry after asymptotic levels of active avoidance behavior are attained.
    Perrotti LI; Dennis TS; Jiao X; Servatius RJ; Pang KC; Beck KD
    Brain Res Bull; 2013 Sep; 98():102-10. PubMed ID: 23932962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Danger and safety signals independently influence persistent pathological avoidance in anxiety-vulnerable Wistar Kyoto rats: A role for impaired configural learning in anxiety vulnerability.
    Spiegler KM; Smith IM; Pang KCH
    Behav Brain Res; 2019 Jan; 356():78-88. PubMed ID: 30063948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the hippocampus in avoidance learning and anxiety vulnerability.
    Cominski TP; Jiao X; Catuzzi JE; Stewart AL; Pang KC
    Front Behav Neurosci; 2014; 8():273. PubMed ID: 25152721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wistar-Kyoto rats as an animal model of anxiety vulnerability: support for a hypervigilance hypothesis.
    McAuley JD; Stewart AL; Webber ES; Cromwell HC; Servatius RJ; Pang KC
    Behav Brain Res; 2009 Dec; 204(1):162-8. PubMed ID: 19523988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ITI-Signals and Prelimbic Cortex Facilitate Avoidance Acquisition and Reduce Avoidance Latencies, Respectively, in Male WKY Rats.
    Beck KD; Jiao X; Smith IM; Myers CE; Pang KC; Servatius RJ
    Front Behav Neurosci; 2014; 8():403. PubMed ID: 25484860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysfunction in amygdala-prefrontal plasticity and extinction-resistant avoidance: A model for anxiety disorder vulnerability.
    Fragale JE; Khariv V; Gregor DM; Smith IM; Jiao X; Elkabes S; Servatius RJ; Pang KC; Beck KD
    Exp Neurol; 2016 Jan; 275 Pt 1(Pt 1):59-68. PubMed ID: 26546833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential use of danger and safety signals in an animal model of anxiety vulnerability: The behavioral economics of avoidance.
    Spiegler KM; Fortress AM; Pang KCH
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Mar; 82():195-204. PubMed ID: 29175308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.