These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25339894)

  • 1. The ISI distribution of the stochastic Hodgkin-Huxley neuron.
    Rowat PF; Greenwood PE
    Front Comput Neurosci; 2014; 8():111. PubMed ID: 25339894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons.
    Goldwyn JH; Imennov NS; Famulare M; Shea-Brown E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041908. PubMed ID: 21599202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channel-noise-induced critical slowing in the subthreshold Hodgkin-Huxley neuron.
    Bukoski A; Steyn-Ross DA; Steyn-Ross ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032708. PubMed ID: 25871145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of a Hodgkin-Huxley neuron to various types of spike-train inputs.
    Hasegawa H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):718-26. PubMed ID: 11046315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving molecular contributions of ion channel noise to interspike interval variability through stochastic shielding.
    Pu S; Thomas PJ
    Biol Cybern; 2021 Jun; 115(3):267-302. PubMed ID: 34021802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How noisy adaptation of neurons shapes interspike interval histograms and correlations.
    Schwalger T; Fisch K; Benda J; Lindner B
    PLoS Comput Biol; 2010 Dec; 6(12):e1001026. PubMed ID: 21187900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing.
    Rowat P
    Neural Comput; 2007 May; 19(5):1215-50. PubMed ID: 17381265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic differential equation model for cerebellar granule cell excitability.
    Saarinen A; Linne ML; Yli-Harja O
    PLoS Comput Biol; 2008 Feb; 4(2):e1000004. PubMed ID: 18463700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mean-return-time phase of a stochastic oscillator provides an approximate renewal description for the associated point process.
    Holzhausen K; Ramlow L; Pu S; Thomas PJ; Lindner B
    Biol Cybern; 2022 Apr; 116(2):235-251. PubMed ID: 35166932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model.
    Ding S; Qian M; Qian H; Zhang X
    J Chem Phys; 2016 Dec; 145(24):244107. PubMed ID: 28049296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike trains in a stochastic Hodgkin-Huxley system.
    Henry C T
    Biosystems; 2005 Apr; 80(1):25-36. PubMed ID: 15740832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and Accurate Langevin Simulations of Stochastic Hodgkin-Huxley Dynamics.
    Pu S; Thomas PJ
    Neural Comput; 2020 Oct; 32(10):1775-1835. PubMed ID: 32795235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling ion channel dynamics through reflected stochastic differential equations.
    Dangerfield CE; Kay D; Burrage K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051907. PubMed ID: 23004788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple, fast and accurate implementation of the diffusion approximation algorithm for stochastic ion channels with multiple states.
    Orio P; Soudry D
    PLoS One; 2012; 7(5):e36670. PubMed ID: 22629320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion approximation-based simulation of stochastic ion channels: which method to use?
    Pezo D; Soudry D; Orio P
    Front Comput Neurosci; 2014; 8():139. PubMed ID: 25404914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interspike interval distributions of spiking neurons driven by fluctuating inputs.
    Ostojic S
    J Neurophysiol; 2011 Jul; 106(1):361-73. PubMed ID: 21525364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computation of spiking activity for a stochastic spatial neuron model: effects of spatial distribution of input on bimodality and CV of the ISI distribution.
    Tuckwell HC
    Math Biosci; 2007 Jun; 207(2):246-60. PubMed ID: 17337282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic resonance can induce oscillation in a recurrent Hodgkin-Huxley neuron model with added Gaussian noise.
    Mino H; Durand DM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2457-60. PubMed ID: 19163200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of transition times in a stochastic model of excitable cell: Insights into the cell-intrinsic mechanisms of randomness in neuronal interspike intervals.
    Requena-Carrión J; Requena-Carrión VJ
    Phys Rev E; 2016 Apr; 93():042418. PubMed ID: 27176339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Space-Clamped Hodgkin-Huxley System with Random Synaptic Input: Inhibition of Spiking by Weak Noise and Analysis with Moment Equations.
    Tuckwell HC; Ditlevsen S
    Neural Comput; 2016 Oct; 28(10):2129-61. PubMed ID: 27557099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.