These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 25339904)

  • 21. Rho GTPases: Non-canonical regulation by cysteine oxidation.
    Hurst M; McGarry DJ; Olson MF
    Bioessays; 2022 Feb; 44(2):e2100152. PubMed ID: 34889471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation.
    Mieyal JJ; Chock PB
    Antioxid Redox Signal; 2012 Mar; 16(6):471-5. PubMed ID: 22136616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thiol-based posttranslational modifications in parasites.
    Jortzik E; Wang L; Becker K
    Antioxid Redox Signal; 2012 Aug; 17(4):657-73. PubMed ID: 22085115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The redox switch: dynamic regulation of protein function by cysteine modifications.
    Spadaro D; Yun BW; Spoel SH; Chu C; Wang YQ; Loake GJ
    Physiol Plant; 2010 Apr; 138(4):360-71. PubMed ID: 19912563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation.
    Garrido Ruiz D; Sandoval-Perez A; Rangarajan AV; Gunderson EL; Jacobson MP
    Biochemistry; 2022 Oct; 61(20):2165-2176. PubMed ID: 36161872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system.
    Chung HS; Wang SB; Venkatraman V; Murray CI; Van Eyk JE
    Circ Res; 2013 Jan; 112(2):382-92. PubMed ID: 23329793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Redox modifications of cysteine residues in plant proteins].
    Szworst-Łupina D; Rusinowski Z; Zagdańska B
    Postepy Biochem; 2015; 61(2):191-7. PubMed ID: 26689012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical methods for mapping cysteine oxidation.
    Alcock LJ; Perkins MV; Chalker JM
    Chem Soc Rev; 2018 Jan; 47(1):231-268. PubMed ID: 29242887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein redox modification as a cellular defense mechanism against tissue ischemic injury.
    Yan LJ
    Oxid Med Cell Longev; 2014; 2014():343154. PubMed ID: 24883175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.
    Sabens Liedhegner EA; Gao XH; Mieyal JJ
    Antioxid Redox Signal; 2012 Mar; 16(6):543-66. PubMed ID: 22066468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural insights into redox-active cysteine residues of the Src family kinases.
    Heppner DE
    Redox Biol; 2021 May; 41():101934. PubMed ID: 33765616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement and meaning of cellular thiol:disufhide redox status.
    Comini MA
    Free Radic Res; 2016; 50(2):246-71. PubMed ID: 26695718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Introduction to the thematic minireview series on redox-active protein modifications and signaling.
    Banerjee R
    J Biol Chem; 2013 Sep; 288(37):26463. PubMed ID: 23861402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation, reactivity, and detection of protein sulfenic acids.
    Kettenhofen NJ; Wood MJ
    Chem Res Toxicol; 2010 Nov; 23(11):1633-46. PubMed ID: 20845928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein sulfenic acid formation: from cellular damage to redox regulation.
    Roos G; Messens J
    Free Radic Biol Med; 2011 Jul; 51(2):314-26. PubMed ID: 21605662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stoichiometric Thiol Redox Proteomics for Quantifying Cellular Responses to Perturbations.
    Day NJ; Gaffrey MJ; Qian WJ
    Antioxidants (Basel); 2021 Mar; 10(3):. PubMed ID: 33807006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.