These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25339989)

  • 1. Activity artifacts in drug discovery and different facets of compound promiscuity.
    Bajorath J
    F1000Res; 2014; 3():233. PubMed ID: 25339989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filtering promiscuous compounds in early drug discovery: is it a good idea?
    Senger MR; Fraga CA; Dantas RF; Silva FP
    Drug Discov Today; 2016 Jun; 21(6):868-72. PubMed ID: 26880580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward an Understanding of Pan-Assay Interference Compounds and Promiscuity: A Structural Perspective on Binding Modes.
    Bolz SN; Adasme MF; Schroeder M
    J Chem Inf Model; 2021 May; 61(5):2248-2262. PubMed ID: 33899463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Activity Profiles of PAINS and Their Structural Context in Target-Ligand Complexes.
    Siramshetty VB; Preissner R; Gohlke BO
    J Chem Inf Model; 2018 Sep; 58(9):1847-1857. PubMed ID: 30105913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Nuisance Substructures and Aggregators in a Comprehensive Database of Food Chemical Compounds.
    Kaya I; Colmenarejo G
    J Agric Food Chem; 2020 Aug; 68(33):8812-8824. PubMed ID: 32687707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the Degree of Promiscuity of Extensively Assayed Compounds.
    Jasial S; Hu Y; Bajorath J
    PLoS One; 2016; 11(4):e0153873. PubMed ID: 27082988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Promiscuous Compounds with Activity against Different Target Classes.
    Feldmann C; Miljković F; Yonchev D; Bajorath J
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31752252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity profile relationships between structurally similar promiscuous compounds.
    Hu Y; Bajorath J
    Eur J Med Chem; 2013 Nov; 69():393-8. PubMed ID: 24077530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the Behavior of Published PAINS Alerts Using a Pharmaceutical Company Data Set.
    Vidler LR; Watson IA; Margolis BJ; Cummins DJ; Brunavs M
    ACS Med Chem Lett; 2018 Aug; 9(8):792-796. PubMed ID: 30128069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Promiscuous Small Molecules from Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology.
    Gilberg E; Jasial S; Stumpfe D; Dimova D; Bajorath J
    J Med Chem; 2016 Nov; 59(22):10285-10290. PubMed ID: 27809519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray Structures of Target-Ligand Complexes Containing Compounds with Assay Interference Potential.
    Gilberg E; Gütschow M; Bajorath J
    J Med Chem; 2018 Feb; 61(3):1276-1284. PubMed ID: 29328660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference CompoundS.
    Capuzzi SJ; Muratov EN; Tropsha A
    J Chem Inf Model; 2017 Mar; 57(3):417-427. PubMed ID: 28165734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological promiscuity: dependence on compound properties and target specificity in a set of recent Roche compounds.
    Peters JU; Schnider P; Mattei P; Kansy M
    ChemMedChem; 2009 Apr; 4(4):680-6. PubMed ID: 19266525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compound promiscuity: what can we learn from current data?
    Hu Y; Bajorath J
    Drug Discov Today; 2013 Jul; 18(13-14):644-50. PubMed ID: 23524195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter.
    Jasial S; Gilberg E; Blaschke T; Bajorath J
    J Med Chem; 2018 Nov; 61(22):10255-10264. PubMed ID: 30422657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale bioactivity analysis of the small-molecule assayed proteome.
    Backman TW; Evans DS; Girke T
    PLoS One; 2017; 12(2):e0171413. PubMed ID: 28178331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.
    Stork C; Wagner J; Friedrich NO; de Bruyn Kops C; Šícho M; Kirchmair J
    ChemMedChem; 2018 Mar; 13(6):564-571. PubMed ID: 29285887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety screening in early drug discovery: An optimized assay panel.
    Bendels S; Bissantz C; Fasching B; Gerebtzoff G; Guba W; Kansy M; Migeon J; Mohr S; Peters JU; Tillier F; Wyler R; Lerner C; Kramer C; Richter H; Roberts S
    J Pharmacol Toxicol Methods; 2019; 99():106609. PubMed ID: 31284073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on The Ecstasy and Agony of Assay Interference Compounds.
    Kenny PW
    J Chem Inf Model; 2017 Nov; 57(11):2640-2645. PubMed ID: 29048168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to Triage PAINS-Full Research.
    Dahlin JL; Walters MA
    Assay Drug Dev Technol; 2016 Apr; 14(3):168-74. PubMed ID: 26496388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.