These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 25340311)
1. Suppression of nanoparticle cytotoxicity approaching in vivo serum concentrations: limitations of in vitro testing for nanosafety. Kim JA; Salvati A; Åberg C; Dawson KA Nanoscale; 2014 Nov; 6(23):14180-4. PubMed ID: 25340311 [TBL] [Abstract][Full Text] [Related]
2. The Transferability from Animal Models to Humans: Challenges Regarding Aggregation and Protein Corona Formation of Nanoparticles. Müller LK; Simon J; Rosenauer C; Mailänder V; Morsbach S; Landfester K Biomacromolecules; 2018 Feb; 19(2):374-385. PubMed ID: 29286657 [TBL] [Abstract][Full Text] [Related]
4. Low dose of amino-modified nanoparticles induces cell cycle arrest. Kim JA; Åberg C; de Cárcer G; Malumbres M; Salvati A; Dawson KA ACS Nano; 2013 Sep; 7(9):7483-94. PubMed ID: 23941353 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of nanoparticle-induced hypersensitivity in pigs: complement or not complement? Szebeni J Drug Discov Today; 2018 Mar; 23(3):487-492. PubMed ID: 29326077 [TBL] [Abstract][Full Text] [Related]
6. The delivered dose: Applying particokinetics to in vitro investigations of nanoparticle internalization by macrophages. Ahmad Khanbeigi R; Kumar A; Sadouki F; Lorenz C; Forbes B; Dailey LA; Collins H J Control Release; 2012 Sep; 162(2):259-66. PubMed ID: 22824784 [TBL] [Abstract][Full Text] [Related]
7. Time-Resolved Quantification of Nanoparticle Uptake, Distribution, and Impact in Precision-Cut Liver Slices. Bartucci R; Åberg C; Melgert BN; Boersma YL; Olinga P; Salvati A Small; 2020 May; 16(21):e1906523. PubMed ID: 32077626 [TBL] [Abstract][Full Text] [Related]
8. RNAi-mediated inhibition of apoptosis fails to prevent cationic nanoparticle-induced cell death in cultured cells. Bexiga MG; Kelly C; Dawson KA; Simpson JC Nanomedicine (Lond); 2014 Aug; 9(11):1651-64. PubMed ID: 24359549 [TBL] [Abstract][Full Text] [Related]
9. Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells. Messerschmidt SK; Musyanovych A; Altvater M; Scheurich P; Pfizenmaier K; Landfester K; Kontermann RE J Control Release; 2009 Jul; 137(1):69-77. PubMed ID: 19306900 [TBL] [Abstract][Full Text] [Related]
10. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. Lunov O; Syrovets T; Loos C; Beil J; Delacher M; Tron K; Nienhaus GU; Musyanovych A; Mailänder V; Landfester K; Simmet T ACS Nano; 2011 Mar; 5(3):1657-69. PubMed ID: 21344890 [TBL] [Abstract][Full Text] [Related]
11. In vitro toxicological screening of nanoparticles on primary human endothelial cells and the role of flow in modulating cell response. Ucciferri N; Collnot EM; Gaiser BK; Tirella A; Stone V; Domenici C; Lehr CM; Ahluwalia A Nanotoxicology; 2014 Sep; 8(6):697-708. PubMed ID: 23909703 [TBL] [Abstract][Full Text] [Related]
12. Cytotoxity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing. Fröhlich E; Meindl C; Roblegg E; Griesbacher A; Pieber TR Nanotoxicology; 2012 Jun; 6(4):424-39. PubMed ID: 21627401 [TBL] [Abstract][Full Text] [Related]
13. Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Fröhlich E; Kueznik T; Samberger C; Roblegg E; Wrighton C; Pieber TR Toxicol Appl Pharmacol; 2010 Feb; 242(3):326-32. PubMed ID: 19909766 [TBL] [Abstract][Full Text] [Related]
14. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Wang F; Bexiga MG; Anguissola S; Boya P; Simpson JC; Salvati A; Dawson KA Nanoscale; 2013 Nov; 5(22):10868-76. PubMed ID: 24108393 [TBL] [Abstract][Full Text] [Related]
15. Superparamagnetic nanoparticle-polystyrene bead conjugates as pathogen capture mimics: a parametric study of factors affecting capture efficiency and specificity. Kell AJ; Somaskandan K; Stewart G; Bergeron MG; Simard B Langmuir; 2008 Apr; 24(7):3493-502. PubMed ID: 18290685 [TBL] [Abstract][Full Text] [Related]
16. Assessment of temporal dose-toxicity relationship of fumed silica nanoparticle in human lung A549 cells by conventional cytotoxicity and ¹H-NMR-based extracellular metabonomic assays. Irfan A; Cauchi M; Edmands W; Gooderham NJ; Njuguna J; Zhu H Toxicol Sci; 2014 Apr; 138(2):354-64. PubMed ID: 24449423 [TBL] [Abstract][Full Text] [Related]
17. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Kroll A; Pillukat MH; Hahn D; Schnekenburger J Eur J Pharm Biopharm; 2009 Jun; 72(2):370-7. PubMed ID: 18775492 [TBL] [Abstract][Full Text] [Related]
18. Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Bexiga MG; Varela JA; Wang F; Fenaroli F; Salvati A; Lynch I; Simpson JC; Dawson KA Nanotoxicology; 2011 Dec; 5(4):557-67. PubMed ID: 21142842 [TBL] [Abstract][Full Text] [Related]
19. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Schimpel C; Teubl B; Absenger M; Meindl C; Fröhlich E; Leitinger G; Zimmer A; Roblegg E Mol Pharm; 2014 Mar; 11(3):808-18. PubMed ID: 24502507 [TBL] [Abstract][Full Text] [Related]
20. Hard corona composition and cellular toxicities of the graphene sheets. Mao H; Chen W; Laurent S; Thirifays C; Burtea C; Rezaee F; Mahmoudi M Colloids Surf B Biointerfaces; 2013 Sep; 109():212-8. PubMed ID: 23643918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]