These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25340507)

  • 1. pH-REMD simulations indicate that the catalytic aspartates of HIV-1 protease exist primarily in a monoprotonated state.
    McGee TD; Edwards J; Roitberg AE
    J Phys Chem B; 2014 Nov; 118(44):12577-85. PubMed ID: 25340507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling HIV protease flaps dynamics by Constant pH Molecular Dynamics simulations.
    Soares RO; Torres PHM; da Silva ML; Pascutti PG
    J Struct Biol; 2016 Aug; 195(2):216-226. PubMed ID: 27291071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Conformational changes in HIV-1 proteinase: effect of protonation of the active center on conformation of HIV-1 proteinase in water].
    Koval'skiĭ DB; Kanibolotskiĭ DS; Dubina VN; Korneliuk AI
    Ukr Biokhim Zh (1999); 2002; 74(6):135-8. PubMed ID: 12924029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into effect of the Asp25/Asp25' protonation states on binding of inhibitors Amprenavir and MKP97 to HIV-1 protease using molecular dynamics simulations and MM-GBSA calculations.
    Yu YX; Wang W; Sun HB; Zhang LL; Wu SL; Liu WT
    SAR QSAR Environ Res; 2021 Aug; 32(8):615-641. PubMed ID: 34157882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatics Plays a Crucial Role in HIV-1 Protease Substrate Binding, Drugs Fail to Take Advantage.
    Ahsan M; Pindi C; Senapati S
    Biochemistry; 2020 Sep; 59(36):3316-3331. PubMed ID: 32822154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues.
    Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM
    Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: molecular dynamics simulations and free energy calculations.
    Chen J; Yang M; Hu G; Shi S; Yi C; Zhang Q
    J Mol Model; 2009 Oct; 15(10):1245-52. PubMed ID: 19294437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations.
    Lee VS; Nimmanpipug P; Aruksakunwong O; Promsri S; Sompornpisut P; Hannongbua S
    J Mol Graph Model; 2007 Sep; 26(2):558-70. PubMed ID: 17468026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The protonation state of the catalytic aspartates in plasmepsin II.
    Friedman R; Caflisch A
    FEBS Lett; 2007 Aug; 581(21):4120-4. PubMed ID: 17689534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: the role of Na+ ions in stabilizing the active site.
    Kovalskyy D; Dubyna V; Mark AE; Kornelyuk A
    Proteins; 2005 Feb; 58(2):450-8. PubMed ID: 15562519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and 'in silico' analysis of the effect of pH on HIV-1 protease inhibitor affinity: implications for the charge state of the protein ionogenic groups.
    Domínguez JL; Gossas T; Carmen Villaverde M; Helena Danielson U; Sussman F
    Bioorg Med Chem; 2012 Aug; 20(15):4838-47. PubMed ID: 22743085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the orientation of the catalytic dyad in aspartic proteases.
    Friedman R; Caflisch A
    Proteins; 2010 May; 78(6):1575-82. PubMed ID: 20112416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atypical protonation states in the active site of HIV-1 protease: a computational study.
    Czodrowski P; Sotriffer CA; Klebe G
    J Chem Inf Model; 2007; 47(4):1590-8. PubMed ID: 17503762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative binding free energies of peptide inhibitors of HIV-1 protease: the influence of the active site protonation state.
    Chen X; Tropsha A
    J Med Chem; 1995 Jan; 38(1):42-8. PubMed ID: 7837238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the protonation states of the catalytic residues in apo and substrate-bound human T-cell leukemia virus type 1 protease.
    Ma S; Vogt KA; Petrillo N; Ruhoff AJ
    Comput Biol Chem; 2015 Jun; 56():61-70. PubMed ID: 25889320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpreting trends in the binding of cyclic ureas to HIV-1 protease.
    Mardis KL; Luo R; Gilson MK
    J Mol Biol; 2001 Jun; 309(2):507-17. PubMed ID: 11371168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the structure of HIV-1 protease complexed with a hexapeptide inhibitor. Part II: Molecular dynamic studies of the active site region.
    Geller M; Miller M; Swanson SM; Maizel J
    Proteins; 1997 Feb; 27(2):195-203. PubMed ID: 9061783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of highly constrained substrate and hydrolysis products bound to HIV-1 protease. Implications for the catalytic mechanism.
    Tyndall JD; Pattenden LK; Reid RC; Hu SH; Alewood D; Alewood PF; Walsh T; Fairlie DP; Martin JL
    Biochemistry; 2008 Mar; 47(12):3736-44. PubMed ID: 18311928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease.
    Trylska J; Antosiewicz J; Geller M; Hodge CN; Klabe RM; Head MS; Gilson MK
    Protein Sci; 1999 Jan; 8(1):180-95. PubMed ID: 10210196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.