These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25340659)

  • 21. A smartphone-driven methodology for estimating physical activities and energy expenditure in free living conditions.
    Guidoux R; Duclos M; Fleury G; Lacomme P; Lamaudière N; Manenq PH; Paris L; Ren L; Rousset S
    J Biomed Inform; 2014 Dec; 52():271-8. PubMed ID: 25048352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy expenditure prediction using a miniaturized ear-worn sensor.
    Atallah L; Leong JJ; Lo B; Yang GZ
    Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.
    Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H
    J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human activity classification with inertial sensors.
    Silva J; Monteiro M; Sousa F
    Stud Health Technol Inform; 2014; 200():101-4. PubMed ID: 24851971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feature selection and activity recognition system using a single triaxial accelerometer.
    Gupta P; Dallas T
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1780-6. PubMed ID: 24691526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitivity and specificity of fall detection in people aged 40 years and over.
    Kangas M; Vikman I; Wiklander J; Lindgren P; Nyberg L; Jämsä T
    Gait Posture; 2009 Jun; 29(4):571-4. PubMed ID: 19153043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.
    Khan AM; Lee YK; Lee S; Kim TS
    Med Biol Eng Comput; 2010 Dec; 48(12):1271-9. PubMed ID: 21052854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Software simulation of unobtrusive falls detection at night-time using passive infrared and pressure mat sensors.
    Ariani A; Redmond SJ; Chang D; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2115-8. PubMed ID: 21096573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physical Activity Classification for Elderly People in Free-Living Conditions.
    Awais M; Chiari L; Ihlen EAF; Helbostad JL; Palmerini L
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):197-207. PubMed ID: 29994291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Objective Assessment of Physical Activity: Classifiers for Public Health.
    Kerr J; Patterson RE; Ellis K; Godbole S; Johnson E; Lanckriet G; Staudenmayer J
    Med Sci Sports Exerc; 2016 May; 48(5):951-7. PubMed ID: 27089222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity classification using realistic data from wearable sensors.
    Pärkkä J; Ermes M; Korpipää P; Mäntyjärvi J; Peltola J; Korhonen I
    IEEE Trans Inf Technol Biomed; 2006 Jan; 10(1):119-28. PubMed ID: 16445257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position.
    Della Mea V; Quattrin O; Parpinel M
    Inform Health Soc Care; 2017 Dec; 42(4):321-334. PubMed ID: 28005434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A smart phone-based pocket fall accident detection, positioning, and rescue system.
    Kau LJ; Chen CS
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):44-56. PubMed ID: 25486656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using decision trees to measure activities in people with stroke.
    Zhang T; Fulk GD; Tang W; Sazonov ES
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6337-40. PubMed ID: 24111190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Smartphone.
    Miao F; Cheng Y; He Y; He Q; Li Y
    Sensors (Basel); 2015 May; 15(5):11465-84. PubMed ID: 25996508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SisFall: A Fall and Movement Dataset.
    Sucerquia A; López JD; Vargas-Bonilla JF
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28117691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor.
    Bourke AK; Lyons GM
    Med Eng Phys; 2008 Jan; 30(1):84-90. PubMed ID: 17222579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recognition of activities of daily living in healthy subjects using two ad-hoc classifiers.
    Urwyler P; Rampa L; Stucki R; Büchler M; Müri R; Mosimann UP; Nef T
    Biomed Eng Online; 2015 Jun; 14():54. PubMed ID: 26048452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.