These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 25340751)
1. A super-ecliptic, pHluorin-mKate2, tandem fluorescent protein-tagged human LC3 for the monitoring of mammalian autophagy. Tanida I; Ueno T; Uchiyama Y PLoS One; 2014; 9(10):e110600. PubMed ID: 25340751 [TBL] [Abstract][Full Text] [Related]
2. Use of pHlurorin-mKate2-human LC3 to Monitor Autophagic Responses. Tanida I; Ueno T; Uchiyama Y Methods Enzymol; 2017; 587():87-96. PubMed ID: 28253978 [TBL] [Abstract][Full Text] [Related]
3. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Zhou C; Zhong W; Zhou J; Sheng F; Fang Z; Wei Y; Chen Y; Deng X; Xia B; Lin J Autophagy; 2012 Aug; 8(8):1215-26. PubMed ID: 22647982 [TBL] [Abstract][Full Text] [Related]
4. Characterization of starvation-induced autophagy in cerebellar Purkinje cells of pHluorin-mKate2-human LC3B transgenic mice. Oliva Trejo JA; Tanida I; Suzuki C; Kakuta S; Tada N; Uchiyama Y Sci Rep; 2020 Jun; 10(1):9643. PubMed ID: 32541814 [TBL] [Abstract][Full Text] [Related]
5. pHluorin-BACE1-mCherry Acts as a Reporter for the Intracellular Distribution of Active BACE1 In Vitro and In Vivo. Zhao L; Zhao Y; Tang FL; Xiong L; Su C; Mei L; Zhu XJ; Xiong WC Cells; 2019 May; 8(5):. PubMed ID: 31108937 [TBL] [Abstract][Full Text] [Related]
6. Establishment of a system for screening autophagic flux regulators using a modified fluorescent reporter and CRISPR/Cas9. Yazawa R; Nishida Y; Aoyama S; Tanida I; Miyatsuka T; Suzuki L; Himuro M; Haruna H; Takubo N; Shimizu T; Watada H Biochem Biophys Res Commun; 2019 Aug; 516(3):686-692. PubMed ID: 31253397 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight. Han Z; Jin L; Chen F; Loturco JJ; Cohen LB; Bondar A; Lazar J; Pieribone VA PLoS One; 2014; 9(11):e113873. PubMed ID: 25419571 [TBL] [Abstract][Full Text] [Related]
8. Consideration about negative controls for LC3 and expression vectors for four colored fluorescent protein-LC3 negative controls. Tanida I; Yamaji T; Ueno T; Ishiura S; Kominami E; Hanada K Autophagy; 2008 Jan; 4(1):131-4. PubMed ID: 18000393 [TBL] [Abstract][Full Text] [Related]
9. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Kimura S; Noda T; Yoshimori T Autophagy; 2007; 3(5):452-60. PubMed ID: 17534139 [TBL] [Abstract][Full Text] [Related]
10. New autophagy reporter mice reveal dynamics of proximal tubular autophagy. Li L; Wang ZV; Hill JA; Lin F J Am Soc Nephrol; 2014 Feb; 25(2):305-15. PubMed ID: 24179166 [TBL] [Abstract][Full Text] [Related]
11. LC3 fluorescent puncta in autophagosomes or in protein aggregates can be distinguished by FRAP analysis in living cells. Wang L; Chen M; Yang J; Zhang Z Autophagy; 2013 May; 9(5):756-69. PubMed ID: 23482084 [TBL] [Abstract][Full Text] [Related]
12. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Ni HM; Bockus A; Wozniak AL; Jones K; Weinman S; Yin XM; Ding WX Autophagy; 2011 Feb; 7(2):188-204. PubMed ID: 21107021 [TBL] [Abstract][Full Text] [Related]
13. Transgenic expression of a ratiometric autophagy probe specifically in neurons enables the interrogation of brain autophagy in vivo. Lee JH; Rao MV; Yang DS; Stavrides P; Im E; Pensalfini A; Huo C; Sarkar P; Yoshimori T; Nixon RA Autophagy; 2019 Mar; 15(3):543-557. PubMed ID: 30269645 [TBL] [Abstract][Full Text] [Related]
14. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Bampton ET; Goemans CG; Niranjan D; Mizushima N; Tolkovsky AM Autophagy; 2005 Apr; 1(1):23-36. PubMed ID: 16874023 [TBL] [Abstract][Full Text] [Related]
15. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Kimura S; Fujita N; Noda T; Yoshimori T Methods Enzymol; 2009; 452():1-12. PubMed ID: 19200872 [TBL] [Abstract][Full Text] [Related]
16. Methods for the Detection of Autophagy in Mammalian Cells. Zhang Z; Singh R; Aschner M Curr Protoc Toxicol; 2016 Aug; 69():20.12.1-20.12.26. PubMed ID: 27479363 [TBL] [Abstract][Full Text] [Related]
17. Use of granzyme B-based fluorescent protein reporters to monitor granzyme distribution and granule integrity in live cells. Bird CH; Rizzitelli A; Harper I; Prescott M; Bird PI Biol Chem; 2010 Aug; 391(8):999-1004. PubMed ID: 20536389 [TBL] [Abstract][Full Text] [Related]
18. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy. Ohara-Imaizumi M; Nakamichi Y; Tanaka T; Katsuta H; Ishida H; Nagamatsu S Biochem J; 2002 Apr; 363(Pt 1):73-80. PubMed ID: 11903049 [TBL] [Abstract][Full Text] [Related]
19. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein-phospholipid conjugates. Tanida I; Sou YS; Ezaki J; Minematsu-Ikeguchi N; Ueno T; Kominami E J Biol Chem; 2004 Aug; 279(35):36268-76. PubMed ID: 15187094 [TBL] [Abstract][Full Text] [Related]
20. Simultaneously Monitoring Multiple Autophagic Processes and Assessing Autophagic Flux in Single Cells by Song H; Dong C; Ren J Anal Chem; 2024 Apr; 96(17):6802-6811. PubMed ID: 38647189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]