These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 25341031)
1. Melt electrospinning and its technologization in tissue engineering. Muerza-Cascante ML; Haylock D; Hutmacher DW; Dalton PD Tissue Eng Part B Rev; 2015 Apr; 21(2):187-202. PubMed ID: 25341031 [TBL] [Abstract][Full Text] [Related]
2. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Brown TD; Edin F; Detta N; Skelton AD; Hutmacher DW; Dalton PD Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():698-708. PubMed ID: 25491879 [TBL] [Abstract][Full Text] [Related]
3. Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding. Bolle ECL; Nicdao D; Dalton PD; Dargaville TR Methods Mol Biol; 2021; 2147():111-124. PubMed ID: 32840814 [TBL] [Abstract][Full Text] [Related]
4. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures. Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885 [TBL] [Abstract][Full Text] [Related]
5. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Park SH; Kim TG; Kim HC; Yang DY; Park TG Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Wang Z; Wang H; Xiong J; Li J; Miao X; Lan X; Liu X; Wang W; Cai N; Tang Y Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112287. PubMed ID: 34474838 [TBL] [Abstract][Full Text] [Related]
7. Improved fabrication of melt electrospun tissue engineering scaffolds using direct writing and advanced electric field control. Ristovski N; Bock N; Liao S; Powell SK; Ren J; Kirby GT; Blackwood KA; Woodruff MA Biointerphases; 2015 Mar; 10(1):011006. PubMed ID: 25810272 [TBL] [Abstract][Full Text] [Related]
8. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Loewner S; Heene S; Baroth T; Heymann H; Cholewa F; Blume H; Blume C Front Bioeng Biotechnol; 2022; 10():896719. PubMed ID: 36061443 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. Ko J; Mohtaram NK; Ahmed F; Montgomery A; Carlson M; Lee PC; Willerth SM; Jun MB J Biomater Sci Polym Ed; 2014; 25(1):1-17. PubMed ID: 23998440 [TBL] [Abstract][Full Text] [Related]
10. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Ingavle GC; Leach JK Tissue Eng Part B Rev; 2014 Aug; 20(4):277-93. PubMed ID: 24004443 [TBL] [Abstract][Full Text] [Related]
11. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering. Castilho M; Feyen D; Flandes-Iparraguirre M; Hochleitner G; Groll J; Doevendans PAF; Vermonden T; Ito K; Sluijter JPG; Malda J Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28699224 [TBL] [Abstract][Full Text] [Related]
12. Recent advancements in electrospinning design for tissue engineering applications: A review. Kishan AP; Cosgriff-Hernandez EM J Biomed Mater Res A; 2017 Oct; 105(10):2892-2905. PubMed ID: 28556551 [TBL] [Abstract][Full Text] [Related]
13. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Farrugia BL; Brown TD; Upton Z; Hutmacher DW; Dalton PD; Dargaville TR Biofabrication; 2013 Jun; 5(2):025001. PubMed ID: 23443534 [TBL] [Abstract][Full Text] [Related]
14. [Electrospinning technology in tissue engineering scaffolds]. Li H; Liu Y; He X; Ding Y; Yan H; Xie P; Yang W Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):15-25. PubMed ID: 22667105 [TBL] [Abstract][Full Text] [Related]
16. Cryogenic electrospinning: proposed mechanism, process parameters and its use in engineering of bilayered tissue structures. Leong MF; Chan WY; Chian KS Nanomedicine (Lond); 2013 Apr; 8(4):555-66. PubMed ID: 23560407 [TBL] [Abstract][Full Text] [Related]
17. Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode. Brown TD; Slotosch A; Thibaudeau L; Taubenberger A; Loessner D; Vaquette C; Dalton PD; Hutmacher DW Biointerphases; 2012 Dec; 7(1-4):13. PubMed ID: 22589056 [TBL] [Abstract][Full Text] [Related]
18. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering. Warren PB; Davis ZG; Fisher MB J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215 [TBL] [Abstract][Full Text] [Related]