BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 25341038)

  • 1. JNK-NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress.
    Kostecka A; Sznarkowska A; Meller K; Acedo P; Shi Y; Mohammad Sakil HA; Kawiak A; Lion M; Królicka A; Wilhelm M; Inga A; Zawacka-Pankau J
    Cell Death Dis; 2014 Oct; 5(10):e1484. PubMed ID: 25341038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TAp73-mediated the activation of c-Jun N-terminal kinase enhances cellular chemosensitivity to cisplatin in ovarian cancer cells.
    Zhang P; Liu SS; Ngan HY
    PLoS One; 2012; 7(8):e42985. PubMed ID: 22900074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The p73 tumor suppressor is targeted by Pirh2 RING finger E3 ubiquitin ligase for the proteasome-dependent degradation.
    Jung YS; Qian Y; Chen X
    J Biol Chem; 2011 Oct; 286(41):35388-35395. PubMed ID: 21852228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligation of CD47 induces G1 arrest in EBV-transformed B cells through ROS generation, p38 MAPK/JNK activation, and Tap73 upregulation.
    Park GB; Bang SR; Lee HK; Kim D; Kim S; Kim JK; Kim YS; Hur DY
    J Immunother; 2014; 37(6):309-20. PubMed ID: 24911792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism.
    Dixit D; Ghildiyal R; Anto NP; Sen E
    Cell Death Dis; 2014 May; 5(5):e1212. PubMed ID: 24810048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73.
    Asher G; Tsvetkov P; Kahana C; Shaul Y
    Genes Dev; 2005 Feb; 19(3):316-21. PubMed ID: 15687255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity.
    Chen D; Ming L; Zou F; Peng Y; Van Houten B; Yu J; Zhang L
    Oncotarget; 2014 Sep; 5(18):8107-22. PubMed ID: 25237903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Akt and JNK/Nrf2/NQO1 pathway contributes to the protective effect of coptisine against AAPH-induced oxidative stress.
    Hu YR; Ma H; Zou ZY; He K; Xiao YB; Wang Y; Feng M; Ye XL; Li XG
    Biomed Pharmacother; 2017 Jan; 85():313-322. PubMed ID: 27903425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells.
    Hu ZB; Liao XH; Xu ZY; Yang X; Dong C; Jin AM; Lu H
    Cancer Med; 2016 Jan; 5(1):74-87. PubMed ID: 26625870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CK2 phosphorylates and inhibits TAp73 tumor suppressor function to promote expression of cancer stem cell genes and phenotype in head and neck cancer.
    Lu H; Yan C; Quan XX; Yang X; Zhang J; Bian Y; Chen Z; Van Waes C
    Neoplasia; 2014 Oct; 16(10):789-800. PubMed ID: 25379016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NRH:quinone oxidoreductase 2 and NAD(P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53.
    Gong X; Kole L; Iskander K; Jaiswal AK
    Cancer Res; 2007 Jun; 67(11):5380-8. PubMed ID: 17545619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Runt-related transcription factor 2 attenuates the transcriptional activity as well as DNA damage-mediated induction of pro-apoptotic TAp73 to regulate chemosensitivity.
    Ozaki T; Sugimoto H; Nakamura M; Hiraoka K; Yoda H; Sang M; Fujiwara K; Nagase H
    FEBS J; 2015 Jan; 282(1):114-28. PubMed ID: 25331851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition.
    Zhou X; Hao Q; Zhang Q; Liao JM; Ke JW; Liao P; Cao B; Lu H
    Cell Death Differ; 2015 May; 22(5):755-66. PubMed ID: 25301064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melphalan-induced apoptosis of EBV-transformed B cells through upregulation of TAp73 and XAF1 and nuclear import of XPA.
    Park GB; Kim YS; Kim D; Kim S; Lee HK; Cho DH; Lee WJ; Hur DY
    J Immunol; 2013 Dec; 191(12):6281-91. PubMed ID: 24249729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TAp73 and ΔNp73 have opposing roles in 5-aza-2'-deoxycytidine-induced apoptosis in breast cancer cells.
    Lai J; Yang F; Zhang W; Wang Y; Xu J; Song W; Huang G; Gu J; Guan X
    Mol Cells; 2014 Aug; 37(8):605-12. PubMed ID: 25134538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53 inactivation upregulates p73 expression through E2F-1 mediated transcription.
    Tophkhane C; Yang SH; Jiang Y; Ma Z; Subramaniam D; Anant S; Yogosawa S; Sakai T; Liu WG; Edgerton S; Thor A; Yang X
    PLoS One; 2012; 7(8):e43564. PubMed ID: 22952705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pml and TAp73 interacting at nuclear body mediate imatinib-induced p53-independent apoptosis of chronic myeloid leukemia cells.
    Liu JH; Liu CC; Yen CC; Gau JP; Wang WS; Tzeng CH
    Int J Cancer; 2009 Jul; 125(1):71-7. PubMed ID: 19291793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1.
    Asher G; Lotem J; Sachs L; Kahana C; Shaul Y
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):13125-30. PubMed ID: 12232053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation.
    Amelio I; Inoue S; Markert EK; Levine AJ; Knight RA; Mak TW; Melino G
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):226-31. PubMed ID: 25535359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase.
    Jones EV; Dickman MJ; Whitmarsh AJ
    Biochem J; 2007 Aug; 405(3):617-23. PubMed ID: 17521288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.