These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 25341105)

  • 1. Insects in fluctuating thermal environments.
    Colinet H; Sinclair BJ; Vernon P; Renault D
    Annu Rev Entomol; 2015 Jan; 60():123-40. PubMed ID: 25341105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment.
    Bernhardt JR; Sunday JM; Thompson PL; O'Connor MI
    Proc Biol Sci; 2018 Sep; 285(1886):. PubMed ID: 30209223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in thermal performance among insect populations.
    Sinclair BJ; Williams CM; Terblanche JS
    Physiol Biochem Zool; 2012; 85(6):594-606. PubMed ID: 23099457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the physiological performance of ectotherms in fluctuating thermal environments.
    Niehaus AC; Angilletta MJ; Sears MW; Franklin CE; Wilson RS
    J Exp Biol; 2012 Feb; 215(Pt 4):694-701. PubMed ID: 22279077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ; While GM; Beeton NJ; Wapstra E
    J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal variation, thermal extremes and the physiological performance of individuals.
    Dowd WW; King FA; Denny MW
    J Exp Biol; 2015 Jun; 218(Pt 12):1956-67. PubMed ID: 26085672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus.
    Rolandi C; Schilman PE
    J Therm Biol; 2018 May; 74():92-99. PubMed ID: 29801656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evolution in fluctuating environments: tolerance measurements at constant temperatures incorrectly predict the ability to tolerate fluctuating temperatures.
    Ketola T; Saarinen K
    J Evol Biol; 2015 Apr; 28(4):800-6. PubMed ID: 25704064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms.
    Llusia D; Márquez R; Beltrán JF; Benítez M; do Amaral JP
    Glob Chang Biol; 2013 Sep; 19(9):2655-74. PubMed ID: 23712567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond Thermal Performance Curves: Modeling Time-Dependent Effects of Thermal Stress on Ectotherm Growth Rates.
    Kingsolver JG; Woods HA
    Am Nat; 2016 Mar; 187(3):283-94. PubMed ID: 26913942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates.
    von Schmalensee L; Hulda Gunnarsdóttir K; Näslund J; Gotthard K; Lehmann P
    Ecol Lett; 2021 Aug; 24(8):1633-1645. PubMed ID: 34036719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking energetics and overwintering in temperate insects.
    Sinclair BJ
    J Therm Biol; 2015 Dec; 54():5-11. PubMed ID: 26615721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survive a Warming Climate: Insect Responses to Extreme High Temperatures.
    Ma CS; Ma G; Pincebourde S
    Annu Rev Entomol; 2021 Jan; 66():163-184. PubMed ID: 32870704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of Spodoptera litura (Lepidoptera: Noctuidae) in responses to different amplitudes of alternating temperatures across permissive warm temperature regimes.
    Zhong T; Gong L; Pan Y; Li J; Lu A; Liu L; Wu H; Zhao Z; Wang L
    J Econ Entomol; 2024 Jun; 117(3):1041-1046. PubMed ID: 38482558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of extreme temperatures on parasitoids in a climate change perspective.
    Hance T; van Baaren J; Vernon P; Boivin G
    Annu Rev Entomol; 2007; 52():107-26. PubMed ID: 16846383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitness under high temperatures is overestimated when daily thermal fluctuation is ignored.
    Bagni T; Siaussat D; Maria A; Fuentes A; Couzi P; Massot M
    J Therm Biol; 2024 Jan; 119():103806. PubMed ID: 38335848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora.
    Chen CY; Chiu MC; Kuo MH
    Bull Entomol Res; 2013 Aug; 103(4):406-13. PubMed ID: 23448233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.