These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 25341105)

  • 21. Temperature variation makes ectotherms more sensitive to climate change.
    Paaijmans KP; Heinig RL; Seliga RA; Blanford JI; Blanford S; Murdock CC; Thomas MB
    Glob Chang Biol; 2013 Aug; 19(8):2373-80. PubMed ID: 23630036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects.
    Kingsolver JG; Higgins JK; Augustine KE
    J Exp Biol; 2015 Jul; 218(Pt 14):2218-25. PubMed ID: 25987738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream.
    Peng J; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Oct; 176():32-40. PubMed ID: 25026540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local adaptation to temperature and the implications for vector-borne diseases.
    Sternberg ED; Thomas MB
    Trends Parasitol; 2014 Mar; 30(3):115-22. PubMed ID: 24513566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen's inequality.
    Denny M
    J Exp Biol; 2017 Jan; 220(Pt 2):139-146. PubMed ID: 28100801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).
    Schoville SD; Slatyer RA; Bergdahl JC; Valdez GA
    J Insect Physiol; 2015 Jul; 78():55-61. PubMed ID: 25956197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of incorporating natural thermal variation when evaluating physiological performance in wild species.
    Morash AJ; Neufeld C; MacCormack TJ; Currie S
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 30037965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges.
    Sinclair BJ; Sørensen JG; Terblanche JS
    Bull Entomol Res; 2022 Aug; 112(4):441-450. PubMed ID: 35346401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An invitation to measure insect cold tolerance: Methods, approaches, and workflow.
    Sinclair BJ; Coello Alvarado LE; Ferguson LV
    J Therm Biol; 2015 Oct; 53():180-97. PubMed ID: 26590471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constant and fluctuating temperature acclimations have similar effects on phenotypic plasticity in springtails.
    Hoskins JL; Janion-Scheepers C; Ireland E; Monro K; Chown SL
    J Therm Biol; 2020 Oct; 93():102690. PubMed ID: 33077113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance in a variable world: using Jensen's inequality to scale up from individuals to populations.
    Denny M
    Conserv Physiol; 2019; 7(1):coz053. PubMed ID: 31528348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Invasive Insects Differ from Non-Invasive in Their Thermal Requirements.
    Jarošík V; Kenis M; Honěk A; Skuhrovec J; Pyšek P
    PLoS One; 2015; 10(6):e0131072. PubMed ID: 26090826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod.
    Zhao F; Zhang W; Hoffmann AA; Ma CS
    J Anim Ecol; 2014 Jul; 83(4):769-78. PubMed ID: 24372332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constant versus fluctuating temperatures in the interactions between Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae).
    Bahar MH; Soroka JJ; Dosdall LM
    Environ Entomol; 2012 Dec; 41(6):1653-61. PubMed ID: 23321115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Constant versus Fluctuating Temperatures on Fitness Indicators of the Aphid
    Tougeron K; Ferrais L; Renard ME; Hance T
    Insects; 2021 Sep; 12(10):. PubMed ID: 34680624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictability rather than amplitude of temperature fluctuations determines stress resistance in a natural population of Drosophila simulans.
    Manenti T; Sørensen JG; Moghadam NN; Loeschcke V
    J Evol Biol; 2014 Oct; 27(10):2113-22. PubMed ID: 25146297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extreme operative temperatures are better descriptors of the thermal environment than mean temperatures.
    Camacho A; Trefaut Rodrigues M; Navas C
    J Therm Biol; 2015; 49-50():106-11. PubMed ID: 25774033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change.
    Kingsolver JG; Buckley LB
    Curr Opin Insect Sci; 2020 Oct; 41():17-24. PubMed ID: 32599547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta.
    Boardman L; Sørensen JG; Terblanche JS
    J Insect Physiol; 2013 Aug; 59(8):781-94. PubMed ID: 23684741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Daily temperature extremes play an important role in predicting thermal effects.
    Ma G; Hoffmann AA; Ma CS
    J Exp Biol; 2015 Jul; 218(Pt 14):2289-96. PubMed ID: 26026043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.