These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 25341495)
1. Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins. Després L; Stalinski R; Tetreau G; Paris M; Bonin A; Navratil V; Reynaud S; David JP BMC Genomics; 2014 Oct; 15(1):926. PubMed ID: 25341495 [TBL] [Abstract][Full Text] [Related]
2. Receptors are affected by selection with each Bacillus thuringiensis israelensis Cry toxin but not with the full Bti mixture in Aedes aegypti. Stalinski R; Laporte F; Tetreau G; Després L Infect Genet Evol; 2016 Oct; 44():218-227. PubMed ID: 27418233 [TBL] [Abstract][Full Text] [Related]
3. Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti. Lee SB; Aimanova KG; Gill SS Insect Biochem Mol Biol; 2014 Nov; 54():112-21. PubMed ID: 25242559 [TBL] [Abstract][Full Text] [Related]
4. Transcription profiling of resistance to Bti toxins in the mosquito Aedes aegypti using next-generation sequencing. Paris M; Melodelima C; Coissac E; Tetreau G; Reynaud S; David JP; Despres L J Invertebr Pathol; 2012 Feb; 109(2):201-8. PubMed ID: 22115744 [TBL] [Abstract][Full Text] [Related]
5. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins. Stalinski R; Laporte F; Després L; Tetreau G Environ Microbiol; 2016 Mar; 18(3):1022-36. PubMed ID: 26663676 [TBL] [Abstract][Full Text] [Related]
6. The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti. Bonin A; Paris M; Frérot H; Bianco E; Tetreau G; Després L Infect Genet Evol; 2015 Oct; 35():204-13. PubMed ID: 26238211 [TBL] [Abstract][Full Text] [Related]
7. Increase in larval gut proteolytic activities and Bti resistance in the Dengue fever mosquito. Tetreau G; Stalinski R; David JP; Després L Arch Insect Biochem Physiol; 2013 Feb; 82(2):71-83. PubMed ID: 23192850 [TBL] [Abstract][Full Text] [Related]
8. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Carvalho KDS; Crespo MM; Araújo AP; da Silva RS; de Melo-Santos MAV; de Oliveira CMF; Silva-Filha MHNL Parasit Vectors; 2018 Dec; 11(1):673. PubMed ID: 30594214 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis. Canton PE; Cancino-Rodezno A; Gill SS; Soberón M; Bravo A BMC Genomics; 2015 Dec; 16():1042. PubMed ID: 26645277 [TBL] [Abstract][Full Text] [Related]
10. Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches. Tetreau G; Bayyareddy K; Jones CM; Stalinski R; Riaz MA; Paris M; David JP; Adang MJ; Després L BMC Genomics; 2012 Jun; 13():248. PubMed ID: 22703117 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing. David JP; Faucon F; Chandor-Proust A; Poupardin R; Riaz MA; Bonin A; Navratil V; Reynaud S BMC Genomics; 2014 Mar; 15():174. PubMed ID: 24593293 [TBL] [Abstract][Full Text] [Related]
12. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Tetreau G; Stalinski R; David JP; Després L Mem Inst Oswaldo Cruz; 2013 Nov; 108(7):894-900. PubMed ID: 24037105 [TBL] [Abstract][Full Text] [Related]
13. Pre-selecting resistance against individual Bti Cry toxins facilitates the development of resistance to the Bti toxins cocktail. Stalinski R; Tetreau G; Gaude T; Després L J Invertebr Pathol; 2014 Jun; 119():50-3. PubMed ID: 24768915 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of Aedes aegypti alkaline phosphatase ALP1 involved in the toxicity of Cry toxins from Bacillus thuringiensis subsp. israelensis and jegathesan. Chen J; Aimanova K; Gill SS Peptides; 2017 Dec; 98():78-85. PubMed ID: 28587836 [TBL] [Abstract][Full Text] [Related]
15. Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis. Wirth MC; Walton WE; Federici BA Environ Microbiol; 2010 May; 12(5):1154-60. PubMed ID: 20141526 [TBL] [Abstract][Full Text] [Related]
16. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations. Bonin A; Paris M; Tetreau G; David JP; Després L BMC Genomics; 2009 Nov; 10():551. PubMed ID: 19930593 [TBL] [Abstract][Full Text] [Related]
17. Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Paris M; Tetreau G; Laurent F; Lelu M; Despres L; David JP Pest Manag Sci; 2011 Jan; 67(1):122-8. PubMed ID: 21162152 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional analysis of susceptible and resistant European corn borer strains and their response to Cry1F protoxin. Nanoth Vellichirammal N; Wang H; Eyun SI; Moriyama EN; Coates BS; Miller NJ; Siegfried BD BMC Genomics; 2015 Jul; 16(1):558. PubMed ID: 26220297 [TBL] [Abstract][Full Text] [Related]
19. Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing. Paris M; Despres L Mol Ecol; 2012 Apr; 21(7):1672-86. PubMed ID: 22348648 [TBL] [Abstract][Full Text] [Related]
20. CRISPR-Cas9 knockout of membrane-bound alkaline phosphatase or cadherin does not confer resistance to Cry toxins in Aedes aegypti. Pacheco S; Gallegos AS; Peláez-Aguilar ÁE; Sánchez J; Gómez I; Soberón M; Bravo A PLoS Negl Trop Dis; 2024 Jun; 18(6):e0012256. PubMed ID: 38870209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]