These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 25341620)
1. Pt-free tandem molecular photoelectrochemical cells for water splitting driven by visible light. Fan K; Li F; Wang L; Daniel Q; Gabrielsson E; Sun L Phys Chem Chem Phys; 2014 Dec; 16(46):25234-40. PubMed ID: 25341620 [TBL] [Abstract][Full Text] [Related]
2. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929 [TBL] [Abstract][Full Text] [Related]
3. Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting. Li F; Fan K; Xu B; Gabrielsson E; Daniel Q; Li L; Sun L J Am Chem Soc; 2015 Jul; 137(28):9153-9. PubMed ID: 26132113 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent. Fan K; Li F; Wang L; Daniel Q; Chen H; Gabrielsson E; Sun J; Sun L ChemSusChem; 2015 Oct; 8(19):3242-7. PubMed ID: 26315677 [TBL] [Abstract][Full Text] [Related]
5. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101 [TBL] [Abstract][Full Text] [Related]
6. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density. Gao Y; Ding X; Liu J; Wang L; Lu Z; Li L; Sun L J Am Chem Soc; 2013 Mar; 135(11):4219-22. PubMed ID: 23465192 [TBL] [Abstract][Full Text] [Related]
7. High-performance photoelectrochemical cells based on a binuclear ruthenium catalyst for visible-light-driven water oxidation. Zhang L; Gao Y; Ding X; Yu Z; Sun L ChemSusChem; 2014 Oct; 7(10):2801-4. PubMed ID: 25139154 [TBL] [Abstract][Full Text] [Related]
8. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems. Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988 [TBL] [Abstract][Full Text] [Related]
9. Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. Higashi M; Domen K; Abe R J Am Chem Soc; 2012 Apr; 134(16):6968-71. PubMed ID: 22489629 [TBL] [Abstract][Full Text] [Related]
10. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting. Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159 [TBL] [Abstract][Full Text] [Related]
11. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting. Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760 [TBL] [Abstract][Full Text] [Related]
12. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation. Chen Y; Tran PD; Boix P; Ren Y; Chiam SY; Li Z; Fu K; Wong LH; Barber J ACS Nano; 2015 Apr; 9(4):3829-36. PubMed ID: 25801437 [TBL] [Abstract][Full Text] [Related]
13. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231 [TBL] [Abstract][Full Text] [Related]
14. Multilayered Hematite Nanowires with Thin-Film Silicon Photovoltaics in an All-Earth-Abundant Hybrid Tandem Device for Solar Water Splitting. Urbain F; Tang P; Smirnov V; Welter K; Andreu T; Finger F; Arbiol J; Morante JR ChemSusChem; 2019 Apr; 12(7):1428-1436. PubMed ID: 30633450 [TBL] [Abstract][Full Text] [Related]
15. PCDA/ZnO Organic-Inorganic Hybrid Photoanode for Efficient Photoelectrochemical Solar Water Splitting. Akhmetzhanov N; Zhang M; Lee D; Hwang YH Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274649 [TBL] [Abstract][Full Text] [Related]
16. Suppression of poisoning of photocathode catalysts in photoelectrochemical cells for highly stable sunlight-driven overall water splitting. Kaneko H; Minegishi T; Kobayashi H; Kuang Y; Domen K J Chem Phys; 2019 Jan; 150(4):041713. PubMed ID: 30709278 [TBL] [Abstract][Full Text] [Related]
17. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Ding C; Shi J; Wang D; Wang Z; Wang N; Liu G; Xiong F; Li C Phys Chem Chem Phys; 2013 Apr; 15(13):4589-95. PubMed ID: 23423143 [TBL] [Abstract][Full Text] [Related]
18. Mg-Zr Cosubstituted Ta3N5 Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting. Seo J; Takata T; Nakabayashi M; Hisatomi T; Shibata N; Minegishi T; Domen K J Am Chem Soc; 2015 Oct; 137(40):12780-3. PubMed ID: 26426439 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. Higashi M; Domen K; Abe R J Am Chem Soc; 2013 Jul; 135(28):10238-41. PubMed ID: 23808352 [TBL] [Abstract][Full Text] [Related]
20. Light illuminated α-Fe2O3/Pt nanoparticles as water activation agent for photoelectrochemical water splitting. Li X; Wang Z; Zhang Z; Chen L; Cheng J; Ni W; Wang B; Xie E Sci Rep; 2015 Mar; 5():9130. PubMed ID: 25773684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]