These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25341867)

  • 21. Transcriptome and Metabolome Analyses Provide Insights into the Stomium Degeneration Mechanism in Lily.
    He L; Liu X; Wu Z; Teng N
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic variability and diversity of the main resources of lily assessed via phenotypic characters, pollen morphology, and ISSR markers.
    Wang JM; Ma SL; Li WQ; Wang Q; Cao HY; Gu JH; Lu YM
    Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor.
    Li X; Wang C; Cheng J; Zhang J; da Silva JA; Liu X; Duan X; Li T; Sun H
    BMC Plant Biol; 2014 Dec; 14():358. PubMed ID: 25524032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of global gene expression profiles during the flowering initiation process of Lilium × formolongi.
    Li YF; Zhang MF; Zhang M; Jia GX
    Plant Mol Biol; 2017 Jul; 94(4-5):361-379. PubMed ID: 28429252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of lily pollen 14-3-3 isoforms and their subcellular and time-dependent expression profile.
    Pertl H; Rittmann S; Schulze WX; Obermeyer G
    Biol Chem; 2011 Mar; 392(3):249-62. PubMed ID: 21291338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation.
    Chen MK; Lin IC; Yang CH
    Plant Cell Physiol; 2008 May; 49(5):704-17. PubMed ID: 18367516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of novel Ty1-copia-like retrotransposons from lily.
    Lee SI; Park KC; Son JH; Hwang YJ; Lim KB; Song YS; Kim JH; Kim NS
    Genome; 2013 Sep; 56(9):495-503. PubMed ID: 24168670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion.
    Park SY; Lord EM
    Plant Mol Biol; 2003 Jan; 51(2):183-9. PubMed ID: 12602877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small heat shock protein LimHSP16.45 protects pollen mother cells and tapetal cells against extreme temperatures during late zygotene to pachytene stages of meiotic prophase I in David Lily.
    Mu C; Wang S; Zhang S; Pan J; Chen N; Li X; Wang Z; Liu H
    Plant Cell Rep; 2011 Oct; 30(10):1981-9. PubMed ID: 21678060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Modified Method for Transient Transformation via Pollen Magnetofection in
    Zhang M; Ma X; Jin G; Han D; Xue J; Du Y; Chen X; Yang F; Zhao C; Zhang X
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The distribution of membrane-bound 14-3-3 proteins in organelle-enriched fractions of germinating lily pollen.
    Pertl H; Gehwolf R; Obermeyer G
    Plant Biol (Stuttg); 2005 Mar; 7(2):140-7. PubMed ID: 15822009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Male gametic cell-specific histone gH2A gene of Lilium longiflorum: genomic structure and promoter activity in the generative cell.
    Ueda K; Suzuki M; Ono M; Ide N; Tanaka I; Inoue M
    Plant Mol Biol; 2005 Sep; 59(2):229-38. PubMed ID: 16247554
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth.
    Wang H; Tse YC; Law AH; Sun SS; Sun YB; Xu ZF; Hillmer S; Robinson DG; Jiang L
    Plant J; 2010 Mar; 61(5):826-38. PubMed ID: 20030753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo cross-linking combined with mass spectrometry analysis reveals receptor-like kinases and Ca(2+) signalling proteins as putative interaction partners of pollen plasma membrane H(+) ATPases.
    Pertl-Obermeyer H; Schulze WX; Obermeyer G
    J Proteomics; 2014 Aug; 108():17-29. PubMed ID: 24824344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The pollen organelle membrane proteome reveals highly spatial-temporal dynamics during germination and tube growth of lily pollen.
    Pertl H; Schulze WX; Obermeyer G
    J Proteome Res; 2009 Nov; 8(11):5142-52. PubMed ID: 19799449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable oil bodies sheltered by a unique oleosin in lily pollen.
    Jiang PL; Wang CS; Hsu CM; Jauh GY; Tzen JT
    Plant Cell Physiol; 2007 Jun; 48(6):812-21. PubMed ID: 17468126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic analysis reveals the differential histone programs between male germline cells and vegetative cells in Lilium davidii.
    Yang H; Yang N; Wang T
    Plant J; 2016 Mar; 85(5):660-74. PubMed ID: 26846354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of expressed sequence tags from Lilium longiflorum in vernalized and non-vernalized bulbs.
    Lugassi-Ben Hamo M; Martin CV; Zaccai M
    J Plant Physiol; 2015 Jan; 173():72-81. PubMed ID: 25462080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transient beta-glucuronidase expression in lily (Lilium longflorum L.) pollen via wounding-assisted Agrobacterium-mediated transformation.
    Kim SS; Shin DI; Park HS
    Biotechnol Lett; 2007 Jun; 29(6):965-9. PubMed ID: 17310322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a lily anther-specific gene encoding cytoskeleton-binding glycoproteins and overexpression of the gene causes severe inhibition of pollen tube growth.
    Wang BJ; Hsu YF; Chen YC; Wang CS
    Planta; 2014 Sep; 240(3):525-37. PubMed ID: 24944111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.