These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 25342070)
1. The zebra finch, Taeniopygia guttata: an avian model for investigating the neurobiological basis of vocal learning. Mello CV Cold Spring Harb Protoc; 2014 Oct; 2014(12):1237-42. PubMed ID: 25342070 [TBL] [Abstract][Full Text] [Related]
2. The constitutive differential transcriptome of a brain circuit for vocal learning. Lovell PV; Huizinga NA; Friedrich SR; Wirthlin M; Mello CV BMC Genomics; 2018 Apr; 19(1):231. PubMed ID: 29614959 [TBL] [Abstract][Full Text] [Related]
3. Exploring the molecular basis of neuronal excitability in a vocal learner. Friedrich SR; Lovell PV; Kaser TM; Mello CV BMC Genomics; 2019 Aug; 20(1):629. PubMed ID: 31375088 [TBL] [Abstract][Full Text] [Related]
4. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species. Chen Q; Heston JB; Burkett ZD; White SA J Exp Biol; 2013 Oct; 216(Pt 19):3682-92. PubMed ID: 24006346 [TBL] [Abstract][Full Text] [Related]
5. Expression of oxytocin receptors in the zebra finch brain during vocal development. Davis MT; Grogan KE; Fraccaroli I; Libecap TJ; Pilgeram NR; Maney DL Dev Neurobiol; 2022 Jan; 82(1):3-15. PubMed ID: 34562056 [TBL] [Abstract][Full Text] [Related]
6. Comparisons of different methods to train a young zebra finch (Taeniopygia guttata) to learn a song. Derégnaucourt S; Poirier C; Kant AV; Linden AV; Gahr M J Physiol Paris; 2013 Jun; 107(3):210-8. PubMed ID: 22982543 [TBL] [Abstract][Full Text] [Related]
7. Diurnal oscillation of vocal development associated with clustered singing by juvenile songbirds. Ohgushi E; Mori C; Wada K J Exp Biol; 2015 Jul; 218(Pt 14):2260-8. PubMed ID: 26034125 [TBL] [Abstract][Full Text] [Related]
8. Sound sequences in birdsong: how much do birds really care? Fishbein AR; Idsardi WJ; Ball GF; Dooling RJ Philos Trans R Soc Lond B Biol Sci; 2020 Jan; 375(1789):20190044. PubMed ID: 31735149 [TBL] [Abstract][Full Text] [Related]
9. Singing under the influence: examining the effects of nutrition and addiction on a learned vocal behavior. Lovell PV; Olson CR; Mello CV Mol Neurobiol; 2011 Oct; 44(2):175-84. PubMed ID: 21340665 [TBL] [Abstract][Full Text] [Related]
10. Is neurogenesis in two songbird species related to their song sequence variability? Polomova J; Lukacova K; Bilcik B; Kubikova L Proc Biol Sci; 2019 Jan; 286(1895):20182872. PubMed ID: 30963944 [TBL] [Abstract][Full Text] [Related]
12. Neurogenesis and the development of neural sex differences in vocal control regions of songbirds. Diez A; An HY; Carfagnini N; Bottini C; MacDougall-Shackleton SA J Comp Neurol; 2021 Aug; 529(11):2970-2986. PubMed ID: 33719029 [TBL] [Abstract][Full Text] [Related]
13. Singing activity-driven Arc expression associated with vocal acoustic plasticity in juvenile songbird. Hayase S; Wada K Eur J Neurosci; 2018 Jul; 48(2):1728-1742. PubMed ID: 29935048 [TBL] [Abstract][Full Text] [Related]
14. Quantifying song bout production during zebra finch sensory-motor learning suggests a sensitive period for vocal practice. Johnson F; Soderstrom K; Whitney O Behav Brain Res; 2002 Apr; 131(1-2):57-65. PubMed ID: 11844572 [TBL] [Abstract][Full Text] [Related]
15. Mirrored patterns of lateralized neuronal activation reflect old and new memories in the avian auditory cortex. Olson EM; Maeda RK; Gobes SM Neuroscience; 2016 Aug; 330():395-402. PubMed ID: 27288718 [TBL] [Abstract][Full Text] [Related]
16. The genome of a songbird. Warren WC; Clayton DF; Ellegren H; Arnold AP; Hillier LW; Künstner A; Searle S; White S; Vilella AJ; Fairley S; Heger A; Kong L; Ponting CP; Jarvis ED; Mello CV; Minx P; Lovell P; Velho TA; Ferris M; Balakrishnan CN; Sinha S; Blatti C; London SE; Li Y; Lin YC; George J; Sweedler J; Southey B; Gunaratne P; Watson M; Nam K; Backström N; Smeds L; Nabholz B; Itoh Y; Whitney O; Pfenning AR; Howard J; Völker M; Skinner BM; Griffin DK; Ye L; McLaren WM; Flicek P; Quesada V; Velasco G; Lopez-Otin C; Puente XS; Olender T; Lancet D; Smit AF; Hubley R; Konkel MK; Walker JA; Batzer MA; Gu W; Pollock DD; Chen L; Cheng Z; Eichler EE; Stapley J; Slate J; Ekblom R; Birkhead T; Burke T; Burt D; Scharff C; Adam I; Richard H; Sultan M; Soldatov A; Lehrach H; Edwards SV; Yang SP; Li X; Graves T; Fulton L; Nelson J; Chinwalla A; Hou S; Mardis ER; Wilson RK Nature; 2010 Apr; 464(7289):757-62. PubMed ID: 20360741 [TBL] [Abstract][Full Text] [Related]
17. Developmental pattern of diacylglycerol lipase-α (DAGLα) immunoreactivity in brain regions important for song learning and control in the zebra finch (Taeniopygia guttata). Soderstrom K; Wilson AR J Chem Neuroanat; 2013 Nov; 53():41-59. PubMed ID: 24140814 [TBL] [Abstract][Full Text] [Related]
18. Neurogenomic insights into the behavioral and vocal development of the zebra finch. Hauber ME; Louder MI; Griffith SC Elife; 2021 Jun; 10():. PubMed ID: 34106827 [TBL] [Abstract][Full Text] [Related]
19. A neural circuit for vocal production responds to viscerosensory input in the songbird. Burke JE; Perkes AD; Perlegos AE; Schmidt MF J Neurophysiol; 2024 Feb; 131(2):304-310. PubMed ID: 38116612 [TBL] [Abstract][Full Text] [Related]