These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 25342168)

  • 1. The network simulation method: a useful tool for locating the kinetic-thermodynamic switching point in complex kinetic schemes.
    Caravaca M; Sanchez-Andrada P; Soto A; Alajarin M
    Phys Chem Chem Phys; 2014 Dec; 16(46):25409-20. PubMed ID: 25342168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SimKinet: A free educational tool based on an electrical analogy to solve chemical kinetic equations.
    Caravaca M; Sanchez-Andrada P; Soto-Meca A
    PLoS One; 2019; 14(3):e0213302. PubMed ID: 30849103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.
    Zhang F; Yeh GT; Parker JC; Brooks SC; Pace MN; Kim YJ; Jardine PM; Watson DB
    J Contam Hydrol; 2007 Jun; 92(1-2):10-32. PubMed ID: 17229488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic analysis of the chemical exchange of beta-phosphorylated cyclic nitroxides by using two-dimensional (temperature versus magnetic field) simulation of ESR spectra: the impact of labile solvent-solute interactions on molecular dynamics.
    Rockenbauer A; Nagy NV; Le Moigne F; Gigmes D; Tordo P
    J Phys Chem A; 2006 Aug; 110(31):9542-8. PubMed ID: 16884186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal decomposition of a honeycomb-network sheet: a molecular dynamics simulation study.
    Paturej J; Popova H; Milchev A; Vilgis TA
    J Chem Phys; 2012 Aug; 137(5):054901. PubMed ID: 22894380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating Chemical Kinetics Without Differential Equations: A Quantitative Theory Based on Chemical Pathways.
    Bai S; Skodje RT
    J Phys Chem Lett; 2017 Aug; 8(16):3826-3833. PubMed ID: 28763229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct comparison of kinetic and thermodynamic influences on gold nanomorphology.
    Barnard AS
    Acc Chem Res; 2012 Oct; 45(10):1688-97. PubMed ID: 22704731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption.
    George K
    Biomed Eng Online; 2005 Jul; 4():40. PubMed ID: 15992411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient enzyme kinetics: graph-theoretic approach.
    Goldstein BN
    Biophys Chem; 2009 May; 141(2-3):193-7. PubMed ID: 19233540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction model of DnBP degradation based on BP neural network in AAO system.
    Ma Y; Huang M; Wan J; Wang Y; Sun X; Zhang H
    Bioresour Technol; 2011 Mar; 102(6):4410-5. PubMed ID: 21277773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A weak second order tau-leaping method for chemical kinetic systems.
    Hu Y; Li T; Min B
    J Chem Phys; 2011 Jul; 135(2):024113. PubMed ID: 21766931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD
    Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase.
    Olsson MH; Siegbahn PE; Warshel A
    J Am Chem Soc; 2004 Mar; 126(9):2820-8. PubMed ID: 14995199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic approach to heavy metal mobilization assessment in sediments: choose of kinetic equations and models to achieve maximum information.
    Fangueiro D; Bermond A; Santos E; Carapuça H; Duarte A
    Talanta; 2005 May; 66(4):844-57. PubMed ID: 18970062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic investigation of a solvent-free, chemoenzymatic reaction sequence towards enantioselective synthesis of a β-amino acid ester.
    Strompen S; Weiss M; Ingram T; Smirnova I; Gröger H; Hilterhaus L; Liese A
    Biotechnol Bioeng; 2012 Jun; 109(6):1479-89. PubMed ID: 22275046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational design of reduced metabolic networks.
    Holzhütter S; Holzhütter HG
    Chembiochem; 2004 Oct; 5(10):1401-22. PubMed ID: 15457535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process.
    Lefèvre S; Boutin O; Ferrasse JH; Malleret L; Faucherand R; Viand A
    Chemosphere; 2011 Aug; 84(9):1208-15. PubMed ID: 21700312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generic schemes for single-molecule kinetics. 1: Self-consistent pathway solutions for renewal processes.
    Cao J; Silbey RJ
    J Phys Chem B; 2008 Oct; 112(41):12867-80. PubMed ID: 18816095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.