These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25342436)

  • 1. Adsorption of Rotavirus, MS2 Bacteriophage and Surface-Modified Silica Nanoparticles to Hydrophobic Matter.
    Farkas K; Varsani A; Pang L
    Food Environ Virol; 2015 Sep; 7(3):261-8. PubMed ID: 25342436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles.
    Gutierrez L; Li X; Wang J; Nangmenyi G; Economy J; Kuhlenschmidt TB; Kuhlenschmidt MS; Nguyen TH
    Water Res; 2009 Dec; 43(20):5198-208. PubMed ID: 19766286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mimicking filtration and transport of rotavirus and adenovirus in sand media using DNA-labeled, protein-coated silica nanoparticles.
    Pang L; Farkas K; Bennett G; Varsani A; Easingwood R; Tilley R; Nowostawska U; Lin S
    Water Res; 2014 Oct; 62():167-79. PubMed ID: 24954130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of rotavirus, MS2 bacteriophage and biomolecule-modified silica nanoparticles in undisturbed silt loam over gravels dosed with onsite wastewater.
    Clemens H; Pang L; Morgan LK; Weaver L
    Water Res; 2020 Feb; 169():115272. PubMed ID: 31726397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation and transport of human enteric viruses and bacteriophage MS2 in alluvial sand and gravel aquifer media-laboratory studies.
    Pang L; Farkas K; Lin S; Hewitt J; Premaratne A; Close M
    Water Res; 2021 May; 196():117051. PubMed ID: 33774351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand.
    Mitzel MR; Sand S; Whalen JK; Tufenkji N
    Water Res; 2016 Apr; 92():113-20. PubMed ID: 26845456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virus deposition onto polyelectrolyte-coated surfaces: A study with bacteriophage MS2.
    Dang HTT; Tarabara VV
    J Colloid Interface Sci; 2019 Mar; 540():155-166. PubMed ID: 30639663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive methodology to determine hydrophobicity of nanomaterials in situ.
    Crandon LE; Boenisch KM; Harper BJ; Harper SL
    PLoS One; 2020; 15(6):e0233844. PubMed ID: 32492068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the hydrophobicity of mesoporous silica materials for the adsorption of organic pollutant in aqueous solution.
    Trouvé A; Batonneau-Gener I; Valange S; Bonne M; Mignard S
    J Hazard Mater; 2012 Jan; 201-202():107-14. PubMed ID: 22169242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparative Study of Fluorescein Isothiocyanate-Encapsulated Silica Nanoparticles Prepared in Seven Different Routes for Developing Fingerprints on Non-Porous Surfaces.
    Alsolmy E; Abdelwahab WM; Patonay G
    J Fluoresc; 2018 Sep; 28(5):1049-1058. PubMed ID: 30032378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of MS2 on oxide nanoparticles affects chlorine disinfection and solar inactivation.
    Zhang W; Zhang X
    Water Res; 2015 Feb; 69():59-67. PubMed ID: 25437338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deposition kinetics of bacteriophage MS2 to natural organic matter: role of divalent cations.
    Pham M; Mintz EA; Nguyen TH
    J Colloid Interface Sci; 2009 Oct; 338(1):1-9. PubMed ID: 19608192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.
    Boudaud N; Machinal C; David F; Fréval-Le Bourdonnec A; Jossent J; Bakanga F; Arnal C; Jaffrezic MP; Oberti S; Gantzer C
    Water Res; 2012 May; 46(8):2651-64. PubMed ID: 22421032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron oxide amended biosand filters for virus removal.
    Bradley I; Straub A; Maraccini P; Markazi S; Nguyen TH
    Water Res; 2011 Oct; 45(15):4501-10. PubMed ID: 21708394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of rotavirus and adenovirus from artificial ground water using hydrochar derived from sewage sludge.
    Chung JW; Foppen JW; Gerner G; Krebs R; Lens PN
    J Appl Microbiol; 2015 Sep; 119(3):876-84. PubMed ID: 26033404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of toxic organic compounds from water with hydrophobic silica aerogels.
    Standeker S; Novak Z; Knez Z
    J Colloid Interface Sci; 2007 Jun; 310(2):362-8. PubMed ID: 17350031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms controlling adsorption of natural organic matter on surfactant-modified iron oxide-coated sand.
    Ding C; Shang C
    Water Res; 2010 Jun; 44(12):3651-8. PubMed ID: 20457463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of bacteriophage MS2 to magnetic iron oxide nanoparticles in aqueous solutions.
    Park JA; Kim SB; Lee CG; Lee SH; Choi JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(10):1116-24. PubMed ID: 24844892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of temperature and Suwannee River natural organic matter on inactivation kinetics of rotavirus and bacteriophage MS2 by solar irradiation.
    Romero OC; Straub AP; Kohn T; Nguyen TH
    Environ Sci Technol; 2011 Dec; 45(24):10385-93. PubMed ID: 22017181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.