These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25342500)

  • 1. Theoretical investigation of thermodynamic stability and mobility of the oxygen vacancy in ThO2-UO2 solid solutions.
    Liu B; Aidhy DS; Zhang Y; Weber WJ
    Phys Chem Chem Phys; 2014 Dec; 16(46):25461-7. PubMed ID: 25342500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen diffusion in ThO2-CeO2 and ThO2-UO2 solid solutions from atomistic calculations.
    Aidhy DS
    Phys Chem Chem Phys; 2016 Jun; 18(22):15019-24. PubMed ID: 27193867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen vacancy formation and migration in Ce(x)Th(1-x)O2 solid solution.
    Xiao HY; Weber WJ
    J Phys Chem B; 2011 May; 115(20):6524-33. PubMed ID: 21542655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).
    Pan YX; Liu CJ; Mei D; Ge Q
    Langmuir; 2010 Apr; 26(8):5551-8. PubMed ID: 20047326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen vacancy formation in CeO2 and Ce(1-x)Zr(x)O2 solid solutions: electron localization, electrostatic potential and structural relaxation.
    Wang HF; Li HY; Gong XQ; Guo YL; Lu GZ; Hu P
    Phys Chem Chem Phys; 2012 Dec; 14(48):16521-35. PubMed ID: 23080297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential.
    Mitra C; Meyer T; Lee HN; Reboredo FA
    J Chem Phys; 2014 Aug; 141(8):084710. PubMed ID: 25173033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen vacancy migration in ceria and Pr-doped ceria: a DFT+U study.
    Dholabhai PP; Adams JB; Crozier P; Sharma R
    J Chem Phys; 2010 Mar; 132(9):094104. PubMed ID: 20210386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo.
    Santana JA; Krogel JT; Kim J; Kent PR; Reboredo FA
    J Chem Phys; 2015 Apr; 142(16):164705. PubMed ID: 25933782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion and aggregation of oxygen vacancies in amorphous silica.
    Munde MS; Gao DZ; Shluger AL
    J Phys Condens Matter; 2017 Jun; 29(24):245701. PubMed ID: 28504974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of atomic and molecular oxygen on the LaMnO3(001) surface: ab initio supercell calculations and thermodynamics.
    Kotomin EA; Mastrikov YA; Heifets E; Maier J
    Phys Chem Chem Phys; 2008 Aug; 10(31):4644-9. PubMed ID: 18665314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase stability of Li-Mn-O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations.
    Longo RC; Kong FT; KC S; Park MS; Yoon J; Yeon DH; Park JH; Doo SG; Cho K
    Phys Chem Chem Phys; 2014 Jun; 16(23):11218-27. PubMed ID: 24776820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing water interactions and vacancy production on gadolinia-doped ceria surfaces using electron stimulated desorption.
    Chen H; Aleksandrov A; Chen Y; Zha S; Liu M; Orlando TM
    J Phys Chem B; 2005 Jun; 109(22):11257-62. PubMed ID: 16852374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen vacancy formation and migration in Ce(1-x)Zr(x)O2 catalyst: a DFT+U calculation.
    Chen HT; Chang JG
    J Chem Phys; 2010 Jun; 132(21):214702. PubMed ID: 20528036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural, electronic and magnetic properties of V(2)O(5-x): An ab initio study.
    Xiao ZR; Guo GY
    J Chem Phys; 2009 Jun; 130(21):214704. PubMed ID: 19508084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved SMTB-Q model applied to oxygen migration and pressure phase transitions in UO
    Mbongo D; Tétot R; Ducher R; Dubourg R; Salles N
    J Phys Condens Matter; 2020 Feb; 32(9):095701. PubMed ID: 31703228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic properties and structural stability of thorium dioxide.
    Lu Y; Yang Y; Zhang P
    J Phys Condens Matter; 2012 Jun; 24(22):225801. PubMed ID: 22555111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Krypton Diffusion Coefficients in Uranium Dioxide Using Atomic Scale Calculations.
    Vathonne E; Andersson DA; Freyss M; Perriot R; Cooper MW; Stanek CR; Bertolus M
    Inorg Chem; 2017 Jan; 56(1):125-137. PubMed ID: 27983828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretic insight into the catalytic activity promotion of CeO2 surfaces by Mn doping.
    Cen W; Liu Y; Wu Z; Wang H; Weng X
    Phys Chem Chem Phys; 2012 Apr; 14(16):5769-77. PubMed ID: 22434262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion quantum Monte Carlo calculations of SrFeO
    Santana JA; Krogel JT; Kent PRC; Reboredo FA
    J Chem Phys; 2017 Jul; 147(3):034701. PubMed ID: 28734312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.